
OpenGL I: Quick Start

Dale Rogerson

Microsoft Developer Network Technology Group

December 1, 1994

Click to open or copy the files in the GLEasy sample application for this technical article.

Abstract

This article describes GLEasy, a simple OpenGL™ program. OpenGL is a three-dimensional (3-D) graphics
library included with the Microsoft® Windows NT™ version 3.5 operating system. GLEasy is a Microsoft
Foundation Class Library (MFC) application that provides a good starting point for investigations into the
Windows NT implementation of OpenGL.

Introduction

There are several methods for teaching something. Take swimming, for example. My Uncle Ulysses had a
favorite method for teaching his small young nephews how to swim. This highly sophisticated method of
aquatic instruction consisted of tossing one of the aforementioned nephews off the wooden dock and into
the ol' fish pond. Uncle U was a big, burly man and could toss a nephew pretty darn far. Unfortunately, I
grew up in a different state and had to learn how to swim through a less scientific method of instruction
taught by the local YMCA.

Well, Uncle U recently passed on, and in honor of his success in reducing the number of relatives at family
reunions, I decided to teach someone something using Uncle U's proven method. The someone is you, and
the something is OpenGL™. I'm going to throw you into an OpenGL program. I'll scream some pointers at
you from the dock as we go through this program.

In other words, this article focuses on what you have to do, not why you have to do it. The bibliography
provides a list of references that offer information on the "why." This article will teach you how to set up
an OpenGL program, so you can devote more time to the fun of rendering three-dimensional (3 -D)
images. My focus is on the Windows NT™ specifics of getting an OpenGL program set up, not on the actual
OpenGL code. Uncle U was similar in this respect. His interest lay in tossing nephews off the dock, not in
whether they could swim.

Note Uncle Ulysses is a fictional character. Any resemblance to a real person is coincidental and would
definitely scare the willies out of me.

GLEasy

The program I am going to describe is called GLEasy. GLEasy is a simple Microsoft® Foundation Class
Library (MFC) application that just happens to include some OpenGL code for placing a cube, a pyramid,
and a dodecahedron (a Platonic solid with 12 sides consisting of pentagons) on the screen. You can even
rotate these objects. GLEasy is a good place to start playing with OpenGL. Everything is set up for OpenGL
to work correctly—all you have to do is add your own OpenGL code to render the scenes you like.

Note In this article, the term "OpenGL" refers to the Windows NT implementation of OpenGL. Some
limitations presented in this article are limitations of OpenGL, some are limitations of the generic pixel
formats, and other limitations are associated with the Windows NT implementation of OpenGL.

To make it easy for you to follow the discussions in this article, I put all the relevant code in the GLEasy
view class CGLEasyView, in the GLEASVW.H and GLEASVW.CPP files. I also included the important parts
of the code in the article.

The article will follow the flow of the GLEasy program. We will start at the beginning with
PreCreateWindow and follow the program all the way to OnDraw, where our 3 -D scene will be
rendered. Along the way, we will look at the OpenGL code placed in the following message handlers:

l PreCreateWindow

l OnCreate

l OnSize

l OnEraseBkgnd

l OnInitialUpdate

l OnDraw

l OnIdle

First, we need to take care of some logistics.

Logistics

Before you can add OpenGL code to your MFC application, you need to handle the odds and ends
described below.

l Add the following lines to STDAFX.H:

#include "gl/gl.h"
#include "gl/glu.h"

These lines will add the OpenGL header files for the OpenGL library and the utility library to the
precompiled header file. Optionally, you can add the following header file to include the functions
defined in the auxiliary library:

#include "gl/glaux.h" // optional

The auxiliary library is a collection of routines used by the sample programs listed in the OpenGL
Programming Guide (called the "Red Book" by the people in the know; see the bibliography at the
end of this article for more information). The auxiliary library is great for learning OpenGL, but I
wouldn't recommend it for commercial applications. The auxiliary library was written to get
something on the screen with as few lines of code as possible. The source code to the auxiliary
library is included with the Microsoft Win32® Software Development Kit (SDK) for Windows NT 3.5,
but not with Visual C++™.

l Link with the following libraries:

OPENGL32.LIB

GLU32.LIB

GLAUX.LIB (optional)

PreCreateWindow

Now that we have taken care of the logistics, we can start examining the flow of execution in GLEasy. The
first member function we call that has some effect on OpenGL is PreCreateWindow.

OpenGL can render only into the client area of a window that has been initialized for OpenGL; it cannot
render into child windows or siblings of the window. Therefore, we need to make sure that we clip the
client area for children and siblings. This is easy enough to do: Simply override PreCreateWindow and
add the following line:

cs.style |= WS_CLIPSIBLINGS | WS_CLIPCHILDREN ;

If your window does not have these style bits set, you cannot set a pixel format for it. Pixel formats are
discussed in the next section.

OnCreate

Before OpenGL can render images on a drawing surface (window or bitmap), the drawing surface must be
initialized. A new concept, pixel format, was added to the graphics device interface (GDI) in Windows NT
version 3.5. A pixel format specifies several properties of a drawing surface, mainly those dealing with the
organization and layout of the color bits. A pixel format is specified with the PIXELFORMATDESCRIPTOR
structure. Each window has its own current pixel format. Different windows can have different pixel
formats, and a single device can support several pixel formats.

For more information on pixel formats, see Dennis Crain's article "Windows NT OpenGL: Getting Started"
in the MSDN Library. I would suggest running the MYGL sample application and looking at the pixel
formats supported by your system. You can learn a lot about pixel formats by playing around with MYGL
for a couple of minutes.

The pixel format must be described, selected, and set for an OpenGL drawing surface before OpenGL
commands will work. A good place for setting the pixel format is in the OnCreate function for a window.
The code in this section is from CGLEasyView::OnCreate .

Describing the Pixel Format

First, we must describe the pixel format we would like. To describe a pixel format, we fill in the fields of a
PIXELFORMATDESCRIPTOR structure. The code below shows how to do just that:

 CClientDC dc(this) ;
 //
 // Fill in the pixel format descriptor.
 //
 PIXELFORMATDESCRIPTOR pfd ;
 memset(&pfd, 0, sizeof(PIXELFORMATDESCRIPTOR)) ;
 pfd.nSize = sizeof(PIXELFORMATDESCRIPTOR);
 pfd.nVersion = 1 ;
 pfd.dwFlags = PFD_DOUBLEBUFFER |
 PFD_SUPPORT_OPENGL |
 PFD_DRAW_TO_WINDOW ;
 pfd.iPixelType = PFD_TYPE_RGBA
 pfd.cColorBits = 24 ;
 pfd.cDepthBits = 32
 pfd.iLayerType = PFD_MAIN_PLANE ;

The code above allocates a PIXELFORMATDESCRIPTOR structure and fills it in. The dwFlags field is set
to the following values:

The iPixelType field is set to PFD_TYPE_RGBA. This tells OpenGL that we will specify colors using their
red, green, and blue (RGB) components. We could have used PFD_TYPE_COLORINDEX to specify an index
into a palette instead of using the RGB components.

The next field of interest is cColorBits. This field is set to the number of bits per pixel (bpp), which
determines the number of colors. In GLEasy, I set cColorBits to 24 because I would like 24 colors if the
system supports it. An application can use GetDeviceCaps to determine the maximum number of possible
colors and choose the bpp value beforehand. Another option is to choose the pixel format you want and
see what you actually get. More on choosing the pixel format in a little bit.

Value Means

PFD_SUPPORT_OPENGL We want to use OpenGL on the surface. The pixel format concept is
generic enough that interfaces or devices other than OpenGL could use
it.

PFD_DRAW_TO_WINDOW We want to render on the client area of a window and not on a bitmap.

PFD_DOUBLEBUFFER We want OpenGL to do double buffering for us. OpenGL will render the
scene to an off-screen buffer, and we will swap that buffer to the
screen.

While cColorBits sets the number of bits we want for color information, cDepthBits sets the bpp value
for depth information. OpenGL maintains a buffer called the depth buffer. For each pixel, the depth buffer
contains the distance between the pixel and the viewer. When OpenGL renders an object, it compares the
position of each new pixel to the position stored in the depth buffer. If the new pixel is closer to the
viewer, it is placed on the screen, and the depth buffer is updated. If the new pixel is farther away from
the viewer, it is not written to the screen. As a result, the depth buffer provides a mechanism for hidden
surface removal.

Currently, the only iLayerType supported is PFD_MAIN_PLANE (the main plane), so I won't go into any
more detail on this field.

Choosing and Setting the Pixel Format

After the pixel format descriptor is filled; it is passed to the new Win32 ChoosePixelFormat function. This
function compares the generic pixel formats supported by Windows NT and any device pixel formats
supported by special hardware accelerators with the pixel format you described, and returns the best
match. The return value of ChoosePixelFormat is a one-based index into the possible pixel formats. The
index is not unique and can change depending on the current display mode.

 int nPixelFormat = ChoosePixelFormat(dc.m_hDC, &pfd);
 if (nPixelFormat == 0)
 {
 TRACE("ChoosePixelFormat Failed %d\r\n",GetLastError()) ;
 return -1 ;
 }
 TRACE("Pixel Format %d\r\n",nPixelFormat) ;

You are free to examine the pixel format recommended by ChoosePixelFormat and choose again if you
don't like it. If you like the format recommended by ChoosePixelFormat, set the pixel format using the
new SetPixelFormat function. SetPixelFormat takes a handle to a device context (DC) as its first
parameter, and sets the window associated with this device context to the appropriate pixel format, as
shown below:

 BOOL bResult = SetPixelFormat (dc.m_hDC, nPixelFormat, &pfd);
 if (!bResult)
 {
 TRACE("SetPixelFormat Failed %d\r\n",GetLastError()) ;
 return -1 ;
 }

For more information on describing, selecting, and setting the pixel format, see Dennis Crain's article
"Windows NT OpenGL: Getting Started" in the MSDN Library.

Creating a Rendering Context

We have set the pixel format. Next, we need to create an OpenGL rendering context (GLRC). You can think
of a rendering context as a port through which all OpenGL commands must pass. The rendering context
you create has the same pixel format as the device context with which it is associated. A rendering context
is not the same as a device context: A device context contains information for GDI, while a rendering
context contains information for OpenGL. In many ways, however, a rendering context is to OpenGL what
a device context is to GDI. You can create multiple rendering contexts in a program.

To create a rendering context, you use the wglCreateContext function. wglCreateContext is known as
a "wiggle" function. The Windows NT implementation of OpenGL includes several wiggle functions, which
are used as bridges to get Windows-specific information, such as the current DCs, into or out of the
rendering context.

wglCreateContext returns an HGLRC, which is a handle to the rendering context. In GLEasy, the HGLRC
is stored in a member variable, m_hrc, of the view class.

 //
 // Create a rendering context.
 //
 m_hrc = wglCreateContext(dc.m_hDC);
 if (!m_hrc)
 {
 TRACE("wglCreateContext Failed %x\r\n", GetLastError()) ;
 return -1;
 }

Quick Look at Palettes

If the PFD_NEED_PALETTE flag in dwFlags is set in the pixel format returned from ChoosePixelFormat,
you need to create a palette. In GLEasy, the CreateRGBPalette function creates a palette for the
CGLEasyView member variable CPalette m_Pal. I will not go into much detail about palettes in this
article. For more information, read my article "OpenGL II: Windows Palettes in RGBA Mode" in the MSDN
Library.

Here are a few facts: If the PFD_NEED_PALETTE flag is set, you have to create a palette. For the generic
OpenGL pixel formats, this must be a 3-3-2 palette, which means that the 8 bits are divided into 3 bits for
red, 3 bits for green, and 2 bits for blue. The CGLEasyView::CreateRGBPalette function creates the
palette correctly for OpenGL. Other palettes will result in incorrect colors in pictures rendered by OpenGL.
Unless you understand what you are doing (that is, unless you've read my "OpenGL II: Windows Palettes
in RGBA Mode" article), you should use CreateRGBPalette.

Summary of OnCreate

In CGLEasyView::OnCreate , we describe the pixel format we want and give this information to
ChoosePixelFormat, which finds the closest match to the format we described. We then pass this format
to SetPixelFormat, which sets the window to the correct format. Now we can create a rendering context
with wglCreateContext to accept OpenGL commands. The last step is to create a palette, if one is
needed.

OnSize

After you create a window, you must size it, so the next area of discussion is CGLEasyView::OnSize.

When mapping a 3-D coordinate to the 2 -D screen, OpenGL must know the size of the client area. In the
OnSize function, we set up the transformations needed to map 3-D coordinates to the screen. GDI doesn't
know anything about the third dimension, so it is up to OpenGL to set up the 3-D projection.

wglMakeCurrent

A program can have several rendering contexts as well as several device contexts. Before we can draw
using GDI, or render using OpenGL, we need to specify the device context or rendering context we are
using. GDI and OpenGL have different philosophies on specifying the current context: GDI calls require an
explicit device context, while OpenGL calls use an implicit rendering context.

All GDI functions either take a handle to a device context:

SetViewport(hDC,x,y)

or (with MFC) require a CDC object or pointer:

dc.SetViewport(x,y) ;

OpenGL, on the other hand, adopts the concept of a current rendering context. Instead of specifying the
rendering context as a parameter for every OpenGL call (as GDI does with device contexts), OpenGL
writes to the current active rendering context. The wglMakeCurrent function is used to set the current
active rendering context:

 BOOL bResult = wglMakeCurrent (dc.m_hDC, m_hrc);
 if (!bResult)
 {
 TRACE("wglMakeCurrent Failed %x\r\n", GetLastError()) ;
 return ;
 }

If a rendering context is not made current, the OpenGL calls will do nothing. Each thread can have only
one current rendering context, and a rendering context can be current in only one thread at a time.

Setting Up the World

Now that we have a current rendering context, we can start using OpenGL functions. The following
functions set up the screen.

 GLdouble gldAspect = (GLdouble) cx/ (GLdouble) cy;
 glMatrixMode(GL_PROJECTION);
 glLoadIdentity();
 gluPerspective(30.0, gldAspect, 1.0, 10.0);
 glViewport(0, 0, cx, cy);

All OpenGL functions are prefixed with "gl". The OpenGL utility library includes some convenient medium-
level functions built from the low-level functions in the OpenGL library. All OpenGL utility functions (for
example, gluPerspective) are prefixed with "glu". For portability, OpenGL has its own types, such as
GLdouble.

I won't describe these functions in detail. Instead, I recommend that you read the Red Book—after all,
that's why it was written.

Before drawing with GDI functions, we have to set up our coordinate system. GDI provides functions such
as SetMapMode, SetViewportOrg, SetViewportExt, SetWindowOrg , and SetWindowExt for
configuring the coordinate system for your application. For many applications, the default settings of the
coordinate system are good enough.

OpenGL applications must also set up their "world," which is complicated by the fact that their world is 3 -
D. The four functions listed in the code fragment above set up the world. Let's take each one in turn.

glMatrixMode

glMatrixMode(GL_PROJECTION);

Matrix calculations are heavily used in 3-D graphic programming, and OpenGL is no exception. Matrices
are used for transforming (for example, scaling, translating, rotating) objects. Matrices are also used to
transform the way information is projected onto the screen. OpenGL maintains two separate
transformation matrix stacks: one for transforming objects and the other for transforming the projection of
the objects. We want to set up the way we view the objects, so we specify the GL_PROJECTION matrix
mode.

glLoadIdentity

glLoadIdentity();

Transformations are combined mathematically. Any transformation added to the stack is combined with
previous transformations. Therefore, the stack must be cleared by loading the identity matrix.

gluPerspective

gluPerspective(30.0, gldAspect, 1.0, 10.0);

We use the utility library function gluPerspective instead of "gl" functions because it is much simpler.
gluPerspective, as called above, sets the field of view to 30 degrees. The aspect ratio is adjusted for the
size of the window client area. The near clipping plane is set at 1 unit from the viewpoint, and the far
clipping plane is set at 10 units from the viewpoint. The viewpoint is located at (0, 0, 0) facing down the
negative z axis, unless we change it (which we don't). Z-axis values that are greater than –1 and less than
–10 are clipped from the screen.

glViewport

glViewport(0, 0, cx, cy);

glViewport instructs OpenGL that it is going to render to the whole client area. If you would like to limit
rendering to a specific part of the client area, you can set the parameters accordingly.

For more information, check out the three articles by Jeff Prosise in the Microsoft Systems Journal (see the
bibliography at the end of this article), and read the Red Book, mentioned earlier.

Finishing up OnSize

Before we leave OnSize, we call wglMakeCurrent to deactivate our current rendering context:

 wglMakeCurrent(NULL, NULL);

This step is not required, but it can help find errors, especially when you are using multiple rendering
contexts.

The CGLEasyView class could be rewritten to make the window's DC current, and then leave it. More on
this later.

OnEraseBkgnd

Overloading OnEraseBkgnd and returning TRUE will stop the program from painting the screen white
before you render your OpenGL screen. This will make your program look much better because it will
eliminate the extra screen flash.

OnInitialUpdate

OpenGL has several tricks for optimizing rendering operations. One trick is to use display lists. A display
list is like a metafile; similar to the way a metafile holds GDI commands for later replay, a display list
holds OpenGL commands for later replay. When OpenGL builds a display list, it can store the results of its
transformation calculations in the list so these calculations do not have to be repeated each time the list is
displayed.

A convenient place to build display lists is in the OnInitialUpdate member function. The display lists are
built before we need them in the OnDraw member function.

In GLEasy, the PrepareScene helper function contains the code for building the display list for the box
and the pyramid.

OnDraw

Now is the time to render the picture. This process consists of the following steps:

Select and realize the palette in the DC.

Make the rendering context current.

Draw the scene using OpenGL commands.

Swap the drawing buffer, if using a double buffering pixel format.

Select the original palette back into the DC.

It is important that you select the palette before you call wglMakeCurrent. wglMakeCurrent initializes
the rendering context based on the current logical palette.

The buffers are swapped using a new Win32 GDI function, SwapBuffers.

The code below implements these steps.

void CGLEasyView::OnDraw(CDC* pDC)
{
 // Select the palette.
 CPalette* ppalOld = pDC->SelectPalette(&m_Pal, 0);

 pDC->RealizePalette();

 // Make the HGLRC current.
 BOOL bResult = wglMakeCurrent (pDC->m_hDC, m_hrc);
 if (!bResult)
 {
 TRACE("wglMakeCurrent Failed %x\r\n", GetLastError()) ;
 }

 // Draw.
 DrawScene() ;

 // Swap buffers.
 SwapBuffers(pDC->m_hDC) ;

 // Select old palette.
 if (ppalOld) pDC->SelectPalette(ppalOld, 0);

 wglMakeCurrent(NULL, NULL) ;
}

Because wglMakeCurrent can be a time-consuming function, it is often more efficient to call
wglMakeCurrent only once in a program. However, this requires keeping a DC around for the entire life
of the program. In Windows NT, the number of DCs is limited only by memory, and users running
Windows NT have plenty of memory. Dennis Crain discusses how to use DCs in detail in "Windows NT
OpenGL: Getting Started" in the section "Pulling It All Together." MYGL (Dennis Crain's sample) and
GENGL (the sample included in the Win32 SDK for Windows NT 3.5) both set the DC at the beginning of
the program and keep it around.

DrawScene

CGLEasy::OnDraw doesn't contain any OpenGL commands; all of the OpenGL commands are in the
CGLEasy::DrawScene function. In this section, I will explain the functionality of DrawScene . Again, for
information on basic OpenGL commands, it's best to refer to the Red Book (Chapter 3 has very good
information on the effects of transformations).

My goal in writing DrawScene was to render an attractive scene while doing the least amount of work
possible. Parts of the DrawScene code are listed below. Some of the code has been left out to make the
point a little clearer; ellipses mark these deletions.

void CGLEasyView::DrawScene()
{
 // Set up some colors.
 GLdouble purple[3] = {1.0, 0.14, 0.6667} ;
 .
 .
 .
 // Enable lighting calculations.
 glEnable(GL_LIGHTING) ;
 glEnable(GL_LIGHT0) ;

 // Enable depth calculations.
 glEnable(GL_DEPTH_TEST);

 // Clear the color and depth buffers.
 glClearColor(0.0f, 0.0f, 0.0f, 0.0f) ;
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

 // Set the material color to follow the current color
 glColorMaterial(GL_FRONT, GL_AMBIENT_AND_DIFFUSE) ;
 glEnable(GL_COLOR_MATERIAL) ;

 //
 // Change to model view matrix stack.
 //
 glMatrixMode(GL_MODELVIEW);
 .
 .
 .
 //
 // Draw the box.
 //
 .
 .
 .
 //
 // Draw the pyramid.
 //
 glLoadIdentity();
 glTranslated(-0.7, 0.5, -4.5);
 glRotated(m_angle[Pyramid].cx, 1.0, 0.0, 0.0);
 glRotated(m_angle[Pyramid].cy, 0.0, 1.0, 0.0);

 glColor3dv(purple) ;
 glCallList(Pyramid) ;

 //
 // Draw the dodecahedron.
 //
 .
 .
 .
 //
 // Flush the drawing pipeline.
 //
 glFlush ();
}

DrawScene starts by enabling lighting calculations. For simplicity, I've used the OpenGL defaults.
(Chapter 6 in the Red Book contains some good information on lighting effects.) As an experiment, you
can disable the lighting calculations and see what happens. OpenGL supports multiple, separate, and
independent lights. glEnable(GL_LIGHT0) turns on the first light.

glEnable(GL_DEPTH_TEST) enables depth calculations. OpenGL uses the depth buffer for hidden
surface removal. For each pixel on the screen, OpenGL keeps track of the distance between the viewport
and the object occupying that pixel. If another object wants to write to a particular pixel, the object's
distance to the viewport is compared with the distance stored in the depth buffer. The object closest to the
viewport is left in the depth buffer and eventually displayed on the screen. glClear clears the drawing
buffer and the depth buffer.

In OpenGL, surfaces have different material properties. These properties change how light affects an
object. For example, some materials reflect light while others absorb light, and some materials consist of
one color while reflecting another color. Sometimes, understanding why a blue object is green can be
confusing. The situation can get even worse if you have several lights with different colors.

To avoid the trouble of setting up different material properties, I used glColorMaterial. Enabling
GL_COLOR_MATERIAL causes OpenGL to use the current color for the material properties of a surface,
thus simplifying the situation.

3-D graphics rely heavily on matrix mathematics. The 3-D transformations (rotation, scaling, and
translation) are expressed mathematically in terms of matrices. OpenGL maintains stacks of matrices that
it combines to transform an object. There are two matrix stacks: one for transforming objects in a scene,
and the other for transforming the scene onto the screen. As you will remember, we used the projection
stack in the OnSize function.

Now we want to transform the box and the pyramid for which we created display lists in OnInitialUpdate.
The first step is to switch to the matrix stack for transforming objects, known as the model view stack.
glMatrixMode(GL_MODELVIEW) changes the current stack to the model view stack.

To transform the pyramid, we clear out the matrix stack by putting the identity matrix on top. If we don't
put the identity matrix on the stack, the transformations we add to the stack will be combined with the
current transformations on the stack.

Now we can transform the pyramid. Because of the way the math works out, the transformations actually
happen in the reverse of the order specified. Therefore, the pyramid is rotated m_angle[Pyramid].cy
degrees around the y axis, then rotated m_angle[Pyramid].cx degrees around the x axis. Finally, it is
translated to the position (–0.7, 0.5, –4.5).

The color of the pyramid is set with the glColor3dv command. The three characters at the end of the
glColor* command name determine the parameter types the command accepts: for example glColor3dv
takes an array of three doubles. The RGB intensities are specified as doubles between 0.0 and 1.0.

Finally, we can call the display list to render the pyramid for us. The box and dodecahedron are rendered
similarly.

We can now flush the OpenGL command pipeline to make sure that all OpenGL commands are processed
before we continue. Once again, see the Red Book for more information.

OnDestroy

In the OnDestroy member function, we clean up after ourselves by deleting the rendering context we
created way back in OnCreate :

wglMakeCurrent(NULL, NULL) ;
if (m_hrc)
{
 wglDeleteContext(m_hrc) ;
 m_hrc = NULL ;
}

OnIdle

You might be interested in how the objects are rotated. When we call CGLEasyApp::OnIdle, this function
calls CGLEasyView::Tick. An array of CSize objects, m_angle, keeps track of the rotation around the x
axis and y axis for each object. In Tick, the CSize object for the current array is incremented by 10
degrees.

 m_angle[m_RotatingObject].cx += 10 ;
 m_angle[m_RotatingObject].cy += 10 ;
 if (m_angle[m_RotatingObject].cx >= 360)
 m_angle[m_RotatingObject].cx = 0 ;
 if (m_angle[m_RotatingObject].cy >= 360)
 m_angle[m_RotatingObject].cy = 0 ;

The window is then invalidated so that the scene can be redrawn. This causes the following lines to
execute, thus drawing the pyramid (if it is the currently rotating object) with a different rotation:

 glRotated(m_angle[Pyramid].cx, 1.0, 0.0, 0.0);
 glRotated(m_angle[Pyramid].cy, 0.0, 1.0, 0.0);

The rotation performance is not very impressive. In fact, it's pretty poor on my 66 Mhz. Pentium™ system
unless you make the scene smaller. In a future article, I will explain how I was able to optimize GLEasy.

Conclusion

OpenGL is a powerful 3-D graphics library, and GLEasy is a good place to start your investigation of
OpenGL. You can extend GLEasy to add more lighting effects, atmospheric effects, and more objects. See
the bibliography below for more information on OpenGL.

Bibliography

Crain, Dennis. "Windows NT OpenGL: Getting Started." April 1994. (MSDN Library, Technical Articles)

Neider, Jackie, Tom Davis, and Mason Woo. OpenGL Programming Guide: The Official Guide to Learning
OpenGL, Release 1 . Reading, MA: Addison-Wesley, 1993. ISBN 0-201-63274-8. (This book is also known
as the "Red Book".)

OpenGL Architecture Review Board. OpenGL Reference Manual: The Official Reference Document for
OpenGL, Release 1 . Reading, MA: Addison-Wesley, 1992. ISBN 0-201-63276-4. (This book is also known
as the "Blue Book".)

Prosise, Jeff. "Advanced 3 -D Graphics for Windows NT 3.5: Introducing the OpenGL Interface, Part I."
Microsoft Systems Journal 9 (October 1994). (MSDN Library Archive Edition, Books and Periodicals)

Prosise, Jeff. "Advanced 3 -D Graphics for Windows NT 3.5: The OpenGL Interface, Part II." Microsoft
Systems Journal 9 (November 1994). (MSDN Library Archive Edition, Books and Periodicals)

Prosise, Jeff. "Understanding Modelview Transformations in OpenGL for Windows NT." Microsoft Systems
Journal 10 (February 1995).

Rogerson, Dale. "OpenGL II: Windows Palettes in RGBA Mode." December 1994. (MSDN Library, Technical
Articles)

Rogerson, Dale. "OpenGL III: Building an OpenGL C++ Class." January 1995. (MSDN Library, Technical
Articles)

Rogerson, Dale. "OpenGL IV: Color Index Mode." January 1995. (MSDN Library, Technical Articles)

Rogerson, Dale. "OpenGL V: Translating Windows DIBs." February 1995. (MSDN Library, Technical
Articles)

Rogerson, Dale. "OpenGL VI: Rendering on DIBs with PFD_DRAW_TO_BITMAP." April 1995. (MSDN
Library, Technical Articles)

Rogerson, Dale. "OpenGL VII: Scratching the Surface of Texture Mapping." May 1995. (MSDN Library,
Technical Articles)

