
Windows NT OpenGL: Getting Started

Dennis Crain
Microsoft Developer Network Technology Group

Created: April 30, 1994

Click to open or copy the files in the MYGL sample application for this technical article.

Abstract

OpenGL, an industry-standard three-dimensional software interface, is now a part of Microsoft® Windows
NT™ version 3.5. As a hardware-independent interface, the operating system needs to provide pixel
format and rendering context management functions. Windows NT provides a generic graphics device
interface (GDI) implementation for this as well as a device implementation. This article details these
implementations, OpenGL/NT functions, and tasks that applications need to accomplish before OpenGL
commands can be used to render images on the device surface.

Introduction

We all knew that it was just a matter of time before three-dimensional (3 -D) graphics would become part
of a Microsoft operating system. Well, it finally happened. Version 3.5 of Microsoft® Windows NT™ now
includes OpenGL (OpenGL/NT). So just what is OpenGL? Originally developed by Silicon Graphics, Inc., it
is an industry-standard procedural software interface for producing 3-D graphics. It does so by providing
roughly 120 commands to draw various primitives including points, lines, and polygons in various modes.
With OpenGL, you can create high-quality still and animated 3-D color images. So now you are an OpenGL
expert, right? If you feel that you don’t qualify for that distinction, go to the bookstore and pick up the
OpenGL Programming Guide and the OpenGL Reference Manual . Both are authored by the OpenGL
Architecture Review Board. They are required reading if you plan to use OpenGL. (For the ISBN numbers
for these manuals, see the "Bibliography" section at the end of this article.)

This article is for anyone who has an interest in OpenGL/NT. Whether you have been writing OpenGL
programs for years or are just getting started, this article is for you. OpenGL is a hardware-independent 3-
D interface. Because of this, it does not include commands for the initialization and management of
devices’ display surfaces. This is the responsibility of the operating system within which you find OpenGL.
So you can see that, irrespective of OpenGL experience, anyone new to OpenGL/NT needs to understand
the details of the implementation specific to Windows NT. At this point, your hopes may have been
dashed. You may have been looking for an article that describes how to create 3-D images. Don’t become
too depressed. Future articles will deal with this, but, as some say, "You need to learn to walk before you
run." Everyone using OpenGL/NT needs to understand how to get the 3-D images on the device surface.

This article will frequently discuss pixel format and rendering context management. Successfully managing
these tasks provides the connection between the hardware independence of OpenGL/NT. Two mechanisms
are provided in Windows NT to provide this connection to OpenGL—pixel format manipulation APIs and
WGL APIs. WGL APIs provide a mechanism for managing the OpenGL rendering context.

MYGL: A Sample OpenGL/NT Application

MYGL is a sample OpenGL/NT application written in C++ using the Microsoft Foundation Class Library
(MFC). A class, COpenGL, wraps the WGL and pixel format APIs and also provides numerous utility
functions for OpenGL/NT applications. Code samples used in this article are taken from MYGL. The MYGL
user interface permits you to specify and set the pixel format of a window (MYGL is an SDI [single-
document interface] application), enumerate the pixel formats, and query the current pixel format
properties.

Generic vs. Device Format, AKA OpenGL/NT Architecture

It is always helpful to understand the architecture of a new feature. From an application developer’s
perspective, a good understanding of the architecture eases the application development process. Design
and implementation decisions can be made with intelligence instead of confusion. If you buy that, take a

look at Figure 1. It is the infamous architecture diagram with an OpenGL/NT flavor this time.

Figure 1. OpenGL/NT architecture

As you work through this section, don’t worry if you don’t understand everything. Much of what is
discussed briefly will be discussed in detail later. You might want to return to this section periodically as
you progress through the article.

If you have a machine like mine (a true antique), OpenGL applications use the generic format. All of the
pixel format management, double buffering, and rendering context management is handled by the generic
OpenGL module and GDI. If you have a machine with a sophisticated video display adapter and a video
display driver that supports OpenGL/NT, you are indeed fortunate. I’m sure I could round up several dozen
Dr. GUI T-shirts if you want to consider a trade!

More seriously, OpenGL/NT calls are intercepted by the installable client driver. The client driver packages
these OpenGL and WGL commands and sends them to the video display driver. The video display driver is
linked with libraries that contain dispatch functions, OpenGL code, and some portable low-level drawing
support functions. The big win with OpenGL support in the video driver and appropriate hardware is speed.
Rendering can be accelerated tremendously. Figure 2 broadly illustrates the differences between generic
and device formats.

Figure 2. Generic and device formats

To illustrate the difference between the generic and device formats a bit more, let’s discuss the new pixel
format API, DescribePixelFormat.

DescribePixelFormat obtains pixel format information about a given device. This information includes
values such as the number of color bitplanes, the type of pixel data, and so on (pixel format will be
discussed in more detail later). An application calls DescribePixelFormat (found in GDI32.DLL). In the
generic format, DescribePixelFormat takes the pixel format index and races through roughly 300 lines of
code, filling in a PIXELFORMATDESCRIPTOR structure based on the index. The function then returns the
maximum number of generic pixel formats available. In the device format, the pixel format index is
compared to the number of device formats (if any). If the pixel format is determined to be a device-
supported format, the driver function, DrvDescribePixelFormat, is called. After returning from the
driver, DescribePixelFormat returns the sum of the generic formats and the device formats.

A discussion of the generic format would not be complete without mentioning its limitations. The following
list of limitations is taken from the Windows NT OpenGL Help file:

l There are printing limitations.

An application cannot directly print an OpenGL image to a monochrome printer. There is, however,
a workaround for this situation. An application can directly print an OpenGL image to a color printer
that offers four or more bits of color information per pixel.

l OpenGL and GDI graphics cannot be mixed in a double-buffered window.

An application can draw both OpenGL graphics and GDI graphics directly into a single-buffered
window, but not into a double-buffered window.

l There are no per-window hardware color palettes.

Windows NT has a single system hardware color palette, which applies to the whole screen. An
OpenGL window cannot have its own hardware palette. It can have its own logical palette. To do so,
it must become a palette -aware application.

l There is no direct support for the Clipboard, DDE, metafiles, or OLE.

A window with OpenGL graphics does not directly support these Windows NT capabilities. There are
workarounds, however, for working with the Clipboard.

l The Inventor 2.0 C++ class library is not included.

The Inventor class library, built on top of OpenGL, provides higher-level constructs for programming
3-D graphics. It is not included in version 1.0 of Windows NT OpenGL.

l There is no support for several pixel format features: overlay and underlay layers, stereoscopic
images, alpha bitplanes, and auxiliary buffers.

There is, however, support for several ancillary buffers: stencil buffer, accumulation buffer, back
buffer (double buffering), and depth (z-axis) buffer.

Pixel Format Management

The OpenGL frame buffer is nothing more than the sum of all the buffers utilized by OpenGL. These
include color buffers, depth buffer, stencil buffer, and an accumulation buffer. Color buffers contain pixel
data that is either color indexed (don’t interpret this as "Windows palette") or RGBA values (A, or alpha, is
used as a measure of opacity). The depth buffer (z buffer) contains depth values for each pixel. Pixels with
larger depth values are "deeper," and a pixel with a smaller value would overwrite the deeper pixel if they
both occupied the same location. The stencil buffer restricts drawing to specific screen locations. The
accumulation buffer is used for accumulating numerous images into a composite image.

OpenGL/NT has implemented many of these buffers in the generic format. Single and double buffering are
supported. Stereoscopic buffering is not supported. The depth, stencil, and accumulation buffers are also
available. To effectively use these buffers, the pixel format must be specified. Every window used by
OpenGL has a pixel format. The following sections describe the structures, functions, and issues related to
pixel format management.

PIXELFORMATDESCRIPTOR

The PIXELFORMATDESCRIPTOR structure below is used to describe a pixel format in Windows NT. The
comments are about the use of the structure in the generic format. Hardware manufacturers may enhance
parts of OpenGL, and may support some pixel format properties not supported in the generic format.

typedef struct tagPIXELFORMATDESCRIPTOR

{
 WORD nSize; //sizeof(PIXELFORMATDESCRIPTOR)
 WORD nVersion; //1
 DWORD dwFlags;
 BYTE iPixelType; //rgba or color indexed
 BYTE cColorBits; //# of color bitplanes
 BYTE cRedBits; //# red bitplanes
 BYTE cRedShift; //shift count for red bitplanes
 BYTE cGreenBits; //# green bitplanes
 BYTE cGreenShift; //shift count for green bitplanes
 BYTE cBlueBits; //# blue bitplanes
 BYTE cBlueShift; //shift count for blue bitplanes
 BYTE cAlphaBits; //not used in generic format
 BYTE cAlphaShift; //not used in generic format
 BYTE cAccumBits; //total # accum buffer bitplanes
 BYTE cAccumRedBits; //# red bitplanes in accum buffer
 BYTE cAccumGreenBits; //# green bitplanes in accum buffer
 BYTE cAccumBlueBits; //# blue bitplanes in accum buffer
 BYTE cAccumAlphaBits; //# alpha bitplanes in accum buffer
 BYTE cDepthBits; //depth of depth (z) buffer
 BYTE cStencilBits; //depth of stencil buffer
 BYTE cAuxBuffers; //not used in generic format
 BYTE iLayerType; //PFD_MAIN_PLANE only in generic format
 BYTE bReserved; //must be 0
 DWORD dwLayerMask;
 DWORD dwVisibleMask;
 DWORD dwDamageMask;
} PIXELFORMATDESCRIPTOR;
;

The following, taken from the OpenGL/NT Help file, describes the members of
PIXELFORMATDESCRIPTOR. This is long, but it is very important to understanding pixel formats and
rendering contexts. So if you are not already familiar with PIXELFORMATDESCRIPTOR, read on.

Member Description

nSize Specifies the size of this data structure. This value should be
set to sizeof(PIXELFORMATDESCRIPTOR).

nVersion Specifies the version of this data structure. This value should
be set to 1.

dwFlags A set of bit flags that specify properties of the pixel buffer.
The properties are generally not mutually exclusive. The
following bit flag constants are defined:

 Value Meaning

 PFD_DRAW_TO_WINDOW The buffer can draw to a window or device surface.

 PFD_DRAW_TO_BITMAP The buffer can draw to a memory bitmap.

 PFD_SUPPORT_GDI The buffer supports GDI drawing. This flag and
PFD_DOUBLEBUFFER are mutually exclusive in the release
1.0 generic implementation.

 PFD_SUPPORT_OPENGL The buffer supports OpenGL drawing.

 PFD_GENERIC_FORMAT The pixel format is supported by the GDI software
implementation. That implementation is also known as the
generic implementation. If this bit is clear, the pixel format
is supported by a device driver or hardware.

 PFD_NEED_PALETTE The buffer uses RGBA pixels on a palette-managed device. A
logical palette is required to achieve the best results for this
pixel type. Colors in the palette should be specified
according to the values of the cRedBits, cRedShift,
cGreenBits, cGreenShift, cBluebits, and cBlueShift members.
The palette should be created and realized in the device
context (DC) before calling wglMakeCurrent.

 PFD_DOUBLEBUFFER The buffer is double-buffered. This flag and
PFD_SUPPORT_GDI are mutually exclusive in the release 1.0

In addition, the following bit flags can be specified when calling ChoosePixelFormat.

generic implementation.

 PFD_STEREO The buffer is stereoscopic. This flag is not supported in the
release 1.0 generic implementation.

 PFD_NEED_SYSTEM_PALETTE This flag is used by OpenGL hardware that supports only one
hardware palette. To use hardware accelerations in such
hardware, the hardware palette has to be in a fixed order
(for example, 3 -3-2) in RGBA mode or match the logical
palette in color index mode. The current
PFD_NEED_PALETTE flag does not have such a requirement.
That is, if only PFD_NEED_PALETTE is set, an application can
use a logical 3 -3-2 palette; the logical-to-system-palette
mapping is performed by the system. The system palette
may not be 3-3-2 and may not have all the logical palette
colors. However, if PFD_NEED_SYSTEM_PALETTE is set, an
application should take over the system palette by calling
SetSystemPaletteUse to force a 1-1 logical-to-system-
palette mapping. If an application chooses to ignore
PFD_NEED_SYSTEM_PALETTE because it does not want to
mess up desktop colors, it will not get maximum
performance but it should still work.

The PFD_NEED_SYSTEM_PALETTE flag is not needed if the
OpenGL hardware supports multiple hardware palettes and
the driver can allocate spare hardware palettes for OpenGL.

The generic pixel formats do not have this flag set.

Value Meaning

PFD_DOUBLE_BUFFER_DONTCARE The requested pixel format can be either single- or double-
buffered.

PFD_STEREO_DONTCARE The requested pixel format can be either monoscopic or
stereoscopic.

iPixelType Specifies the type of pixel data. The following types are
defined:

 Value Meaning

 PFD_TYPE_RGBA RGBA pixels. Each pixel has four components: red, green,
blue, and alpha.

 PFD_TYPE_COLORINDEX Color index pixels. Each pixel uses a color index value

 cColorBits Specifies the number of color bitplanes in each color buffer.
For RGBA pixel types, it is the size of the color buffer
excluding the alpha bitplanes. For color index pixels, it is the
size of the color index buffer.

 cRedBits Specifies the number of red bitplanes in each RGBA color
buffer.

 cRedShift Specifies the shift count for red bitplanes in each RGBA color
buffer.

 cGreenBits Specifies the number of green bitplanes in each RGBA color
buffer.

 cGreenShift Specifies the shift count for green bitplanes in each RGBA

color buffer.

 cBlueBits Specifies the number of blue bitplanes in each RGBA color
buffer.

 cBlueShift Specifies the shift count for blue bitplanes in each RGBA
color buffer.

 cAlphaBits Specifies the number of alpha bitplanes in each RGBA color
buffer. Alpha bitplanes are not supported in the release 1.0
generic implementation.

 cAlphaShift Specifies the shift count for alpha bitplanes in each RGBA
color buffer. Alpha bitplanes are not supported in the release
1.0 generic implementation.

 cAccumBits Specifies the total number of bitplanes in the accumulation
buffer.

 cAccumRedBits Specifies the number of red bitplanes in the accumulation
buffer.

 cAccumGreenBits Specifies the number of green bitplanes in the accumulation
buffer.

 cAccumBlueBits Specifies the number of blue bitplanes in the accumulation
buffer.

 cAccumAlphaBits Specifies the number of alpha bitplanes in the accumulation
buffer.

 cDepthBits Specifies the depth of the depth (z-axis) buffer.

 cStencilBits Specifies the depth of the stencil buffer.

 cAuxBuffers Specifies the number of auxiliary buffers. Auxiliary buffers
are not supported in release 1.0 of the generic
implementation.

 iLayerType Specifies the type of layer. Although the following values are
defined, version 1.0 supports only the main plane (there is
no support for overlay or underlay planes):

 Value Meaning

 PFD_MAIN_PLANE The layer is the main plane.

 PFD_OVERLAY_PLANE The layer is the overlay plane.

 PFD_UNDERLAY_PLANE The layer is the underlay plane.

 bReserved Not used. Must be zero.

 dwLayerMask Specifies the layer mask. The layer mask is used in
conjunction with the visible mask to determine if one layer
overlays another.

 dwVisibleMask Specifies the visible mask. The visible mask is used in
conjunction with the layer mask to determine if one layer
overlays another. If the result of the bitwise AND of the
visible mask of a layer and the layer mask of a second layer
is nonzero, then the first layer overlays the second layer,
and a transparent pixel value exists between the two layers.
If the visible mask is 0, the layer is opaque.

 dwDamageMask Specifies whether more than one pixel format shares the

Pixel Formats

The generic implementation of OpenGL/NT supports 24 different pixel formats. Although each format is
identified by an index from 1 to 24, they are not constant. That is, never rely on the ordering of the
indexes. The pixel formats are characterized by several properties (see Figure 3).

Figure 3. Pixel format properties

The primary property by which they are organized is the number of bits per pixel (BPP). Five bitplane
organizations are supported, including 32 BPP, 24 BPP, 16 BPP, 8 BPP, and 4 BPP. Eight pixel formats are
defined for the number of bits per pixel specified by the display driver. These are referred to as the native
formats. The remaining 16 pixel formats (referred to as non-native formats) are divided evenly between
the other bitplane organizations and are supplied for bitmap support. The formats are then organized by
the pixel type (RGBA or color index), then buffering (single or double), and then the depth of the depth (z)
buffer (32 or 16). Given this, you would think that there are 40 generic formats. However, 16 of the non-
native formats are eliminated because it doesn’t make sense to double buffer to a bitmap. Table 1 lists all
of the native formats.

Table 1. Native Pixel Formats

Table 2 lists the remaining pixel formats. These are repeated for each non-native BPP format.

Table 2. Non-Native Pixel Formats

same frame buffer. If the result of the bitwise AND of the
damage masks between two pixel formats is nonzero, then
they share the same buffers.

Bits/Pixel Pixel Type Buffering Depth (z) buffer

native PFD_TYPE_RGBA Single 32

native PFD_TYPE_RGBA Single 16

native PFD_TYPE_RGBA Double 32

native PFD_TYPE_RGBA Double 16

native PFD_TYPE_COLORINDEX Single 32

native PFD_TYPE_COLORINDEX Single 16

native PFD_TYPE_COLORINDEX Double 32

native PFD_TYPE_COLORINDEX Double 16

Bits/Pixel Pixel Type Buffering Depth (z) buffer

non-native PFD_TYPE_RGBA Single 32

Enumerating Pixel Formats

Enumerating pixel formats is essential to finding a format that is appropriate for an application.
Applications are responsible for defining "appropriate." MYGL looks for a native format. The formats are
enumerated in response to one of two button clicks—one increases the pixel format index and the other
decreases the index. The following code from PIXFORM.CPP demonstrates the enumeration technique used
in MYGL. The m_nNextID member variable is used as an index of the pixel formats.

void CPixForm::OnClickedLastPfd()
{
 COpenGL gl;
 PIXELFORMATDESCRIPTOR pfd;
 //
 //Get the hwnd of the view window.
 //
 HWND hwndview = GetViewHwnd();
 //
 //Get a DC associated with the view window.
 //
 HDC hdc = ::GetDC(hwndview);
 int nID = (m_nNextID > 1) ? m_nNextID-- : 1;
 //
 //Get a description of the pixel format. If it is valid, then go and
 //update the controls in the dialog box, otherwise do nothing.
 //
 if (gl.DescribePixelFormat(hdc, nID, sizeof(PIXELFORMATDESCRIPTOR), &pfd))
 UpdateDlg(&pfd);
 //
 //Release the DC.
 //
 ::ReleaseDC(hwndview, hdc);
}

Pixel Format Functions

Four functions, shown in Table 3, have been implemented to provide management of pixel formats.

Table 3. Pixel Format Functions

Figure 4 illustrates a general method for calling these functions.

non-native PFD_TYPE_RGBA Single 16

non-native PFD_TYPE_COLORINDEX Single 32

non-native PFD_TYPE_COLORINDEX Single 16

Win32 Function Description

ChoosePixelFormat Obtains a device context's pixel format that is the closest match to a
specified pixel format.

SetPixelFormat Sets a window’s or bitmap’s current pixel format to the pixel format
specified by a pixel format index.

GetPixelFormat Obtains the pixel format index of a window’s or bitmap’s current pixel
format.

DescribePixelFormat Given a device context and a pixel format index, fills in a
PIXELFORMATDESCRIPTOR data structure with the pixel format's
properties.

Figure 4. Calling pixel format functions

An application generally knows that it will be using double buffering, writing to the screen, or supporting
GDI. This is the type of information that would be found in the top box of Figure 4 in
PIXELFORMATDESCRIPTOR. The application can either call ChoosePixelFormat, which attempts to
match the requested pixel format with the best supported (device or generic) pixel format available, or it
can call its own pixel format matching function. The following list describes how ChoosePixelFormat
attempts to match the requested pixel format to the pixel formats available:

l First, it attempts to find a pixel format that satisfies the requested attributes:

PFD_DRAW_TO_WINDOW
PFD_DRAW_TO_BITMAP
PFD_SUPPORT_GDI
PFD_SUPPORT_OPENGL
PFD_TYPE_RGBA
PFD_TYPE_COLORINDEX
PFD_DOUBLEBUFFER
PFD_STEREO

l Then it tries to find the best match among the following attributes:

cColorBits
cAlphaBits
cAccumBits
cDepthBits
cStencilBits
cAuxBuffers
iLayerType

l Finally, device pixel formats are given preference over the generic pixel formats.

Once you have an appropriate pixel format, SetPixelFormat is called. If SetPixelFormat is called for a
device context that references a window, the function also changes the pixel format of the window.
Changing the pixel format of a window more than once can lead to significant complications for the window
manager and for multithreaded applications, so it is not allowed. An application can set the pixel format of
a window only one time. Once a window's pixel format is set, it cannot be changed.

Determining the Format

It is a simple matter to determine if a pixel format is a generic or device format. The following code
illustrates the use of the dwFlags field of the PIXELFORMATDESCRIPTOR structure to detect if the pixel
format is generic or device-specific.

BOOL COpenGL::IsDeviceIndex(HDC hdc, int idx)
{
 ASSERT (hdc);
 ASSERT (idx > 0);

 BOOL bRet = FALSE;
 PIXELFORMATDESCRIPTOR pfd;
 int ipfdmax = DescribePixelFormat(hdc, idx, sizeof(PIXELFORMATDESCRIPTOR),
 &pfd);

 if (!(pfd.dwFlags & PFD_GENERIC_FORMAT))
 bRet = TRUE;
 return (bRet);
}

If the PFD_GENERIC_FORMAT bit is set, the pixel format is generic (duh!). It is also very simple to detect
if a given pixel format index is a native or non-native index. The following code illustrates this.

BOOL COpenGL::IsNativeIndex(HDC hdc, int idx)
{
 ASSERT (hdc);
 ASSERT (idx > 0);

 BOOL bRet = FALSE;
 PIXELFORMATDESCRIPTOR pfd;
 int ipfdmax = DescribePixelFormat(hdc, idx, sizeof(PIXELFORMATDESCRIPTOR),
 &pfd);

 if (pfd.dwFlags & PFD_DRAW_TO_WINDOW)
 bRet = TRUE;
 return (bRet);
}

If the PFD_DRAW_TO_WINDOW bit is set in dwFlags, the pixel format is native. This may include both
generic and device-specific pixel formats. If this bit is not set, the pixel format is non-native and is
provided for support of bitmaps.

OpenGL/NT and Device Contexts

As you begin to use device contexts with OpenGL/NT, remember two things:

l Once the pixel format for a window has been set (by calling SetPixelFormat with a DC of that
window), it can never be reset.

l The DC used to create a rendering context may be released or deleted. All DCs subsequently
retrieved or created will have the correct pixel format index associated with them.

To retrieve the index of the currently set pixel format, use the GetPixelFormat function. This function is
used in several places in MYGL. The following code, found in COPENGL.CPP, illustrates its use.

int COpenGL::GetCurPFDIndex()
{
 int icuridx = GetPixelFormat(wglGetCurrentDC());
 return (icuridx);

}

In this code, GetPixelFormat is used to retrieve the pixel format index of the current DC. That index is
then passed to DescribePixelFormat to obtain more information about the pixel format.

To retrieve the maximum number of device pixel formats supported for a given DC, use the
DescribePixelFormat function. In the code below, the return value of DescribePixelFormat is assigned
to the variable ipfdmax.

int COpenGL::GetMaxPFIndex(HDC hdc)
{
 PIXELFORMATDESCRIPTOR pfd;

 int ipfdmax = DescribePixelFormat(hdc, 1, sizeof(PIXELFORMATDESCRIPTOR),
 &pfd);

 return (ipfdmax);
}

The total number of device formats would be:

iDevMax = ipfdmax - 24

OpenGL/NT Rendering Contexts

There are three important things to remember about rendering contexts:

l The pixel format must be set up before creating the rendering context.

l The rendering context must be associated with a device context (by using wglMakeCurrent)
before you can call OpenGL commands.

l The device context should not be released or deleted when it is associated with a rendering context
(unless the DC belongs to a window whose class style is CS_OWNDC).

An OpenGL/NT rendering context (GLRC) is composed of a handle to an OpenGL/NT driver (if any), a client
handle (HGLRC), the current pixel format index, a thread ID, and a handle to the DC bound to the
rendering context.

There are five functions, as shown in Table 4, that permit management of a rendering context.

Table 4. OpenGL/NT Rendering Context Functions (WGL Functions)

Of course all of these functions are important, but the one that will make or break you is
wglMakeCurrent. It is the function that enables all drawing to take place on a DC. It makes the
rendering context the calling thread’s current rendering context through which all OpenGL commands must
"pass." Refer to the OpenGL/NT documentation for a more detailed description of these functions.

In general, an application calls wglCreateContext and then associates the context with a device surface
by calling wglMakeCurrent. OpenGL drawing can then take place on the device surface, after which the
rendering context can be unassociated with the DC by calling wglMakeCurrent again (with NULL
arguments). Finally, the rendering context can be deleted by calling wglDeleteContext.

Pulling It All Together

As you can see, device contexts (including pixel formats) and rendering contexts are closely associated.
So, just how does it all fall together? It all starts with a device context.

The DC is used to create an OpenGL rendering context. This context is used by OpenGL to draw to the DC
and ultimately the device surface. There are two ways you can approach the use of DCs. In Figure 5, the
DC is created during initialization and destroyed as the application closes. The fact that we are not pairing
GetDC/CreateDC and ReleaseDC/DeleteDC within the same scope is unnerving to some. Ah yes, we
have been conditioned! Arf arf...drool.

WGL Function Description

wglCreateContext Creates a new rendering context.

wglMakeCurrent Sets a thread's current rendering context.

wglGetCurrentContext Obtains a handle to a thread's current rendering context.

wglGetCurrentDC Obtains a handle to the device context that is associated with a
thread's current rendering context.

wglDeleteContext Deletes a rendering context.

Figure 5. First approach to use of device contexts with OpenGL

Rest assured, you can follow your ingrained desire to delete the DC immediately after use. Figure 6
illustrates this. The rendering context is created in the response to WM_CREATE, and the DC used to
create the context is released or deleted. It is not until the response to WM_PAINT that the rendering
context is bound to a device context, in this case the Paint DC. It is important to note that this way of
doing things is quite expensive. Making the context current is not trivial. The point to be made here is that
a rendering context must be bound to a DC before OpenGL drawing can take place. You decide where and
what DC you are going to bind to the rendering context (as long as the DC has the same pixel format as
that used to create the rendering context).

Figure 6. Second approach to use of device contexts with OpenGL

The OpenGL sample (GENGL) included with the Windows NT 3.5 Software Development Kit (SDK) takes
the first approach. MYGL uses the first approach, although slightly modified. The rendering context is
created in response to user input provided in a dialog box. When the dialog box is dismissed, the handle of
the view window is used to obtain a DC and rendering context. When the view window is destroyed, the
rendering context is deleted.

There is a little "gotcha" that can prevent setting the pixel format of a device context. The window in which
OpenGL drawing will take place must have the style bits WS_CLIPCHILDREN and WS_CLIPSIBLINGS set.

Otherwise, SetPixelFormat will fail. The following code taken from MYGLVIEW.CPP shows how to override
the PreCreateWindow function in order to set these style bits.

BOOL CMyglView::PreCreateWindow(CREATESTRUCT& cs)
{
 //The view window style bits must include WS_CLIPSIBLINGS and
 //WS_CLIPCHILDREN so that the wgl functions will work.
 //
 cs.style = cs.style | WS_CLIPSIBLINGS | WS_CLIPCHILDREN;

 return CView::PreCreateWindow(cs);
}

After the user has entered preliminary PIXELFORMATDESCRIPTOR values by way of the Choose Pixel
Format (CPIXFORM.CPP) dialog box, the OK button is clicked and the OnOK function is called. After
validating the existence of a rendering context and the appropriateness of the pixel format, the following
code, from MYGL (in COPENGL.CPP), is called to set up the pixel format and create the rendering context.

BOOL COpenGL::GetGLRC(HDC hdc)
{
 BOOL bRet = TRUE;

 ASSERT (m_pPixFmtDesc);

 if (SetupPixelFormat(hdc, m_pPixFmtDesc))
 {
 if ((m_hglrc = wglCreateContext(hdc)) != NULL)
 {
 if (!wglMakeCurrent(hdc, m_hglrc))
 {
 wglDeleteContext(m_hglrc);
 bRet = FALSE;
 }
 }
 else bRet = FALSE;
 }
 else
 bRet = FALSE;

 return bRet;
}

Once the pixel format is set up for the DC, the rendering context is created by a call to
wglCreateContext. If the rendering context was successfully created, it is bound to the current DC. Note
that this DC is not released. This does not happen until MYGL closes.

MYGL draws by issuing OpenGL commands in the OnDraw function found in MYGLVIEW.CPP.

void CMyglView::OnDraw(CDC* pDC)
{
 CMyglDoc* pDoc = GetDocument();
 RECT rc;
 COpenGL gl;
 HGLRC hglrc = gl.wglGetCurrentContext();

 if (hglrc)
 {
 GetClientRect(&rc);
 DrawScene(rc);
 }

}

The wglGetCurrentContext function is called to ensure that there is in fact a rendering context.
However, if there was not, nothing adverse would happen. No drawing would take place. Note that the DC
associated with pDC is not passed to DrawScene . The DC is implicit and is the DC associated with the
rendering context.

The following code is called when MYGL closes.

BOOL COpenGL::ReleaseGLRC(HWND hwnd)
{
 BOOL bRet = TRUE;
 HDC hdc;
 HGLRC hglrc;

 if (hglrc = wglGetCurrentContext())
 {
 //

 //Get the DC associated with the rendering context.
 //
 hdc = wglGetCurrentDC();
 //
 //Make the rendering context not current.
 //
 wglMakeCurrent(NULL, NULL);
 //
 //Nuke the DC.
 //
 ::ReleaseDC(hwnd, hdc);
 //
 //Nuke the rendering context.
 //
 wglDeleteContext(hglrc);
 }
 else bRet = FALSE;
 return bRet;

}

After retrieving the current DC, using wglGetCurrentDC, it is released. The rendering context is then
released.

Summary

Windows NT version 3.5 provides OpenGL capabilities. In the generic implementation, all of the pixel
format and rendering management is handled by GDI. In the device implementation, much of this
management is supported by the device. Before OpenGL drawing can take place, the window, bitmap, or
device’s pixel format must be set up. A rendering context is then created. At this point, drawing can take
place. Now that Windows NT provides the structure and functions for 3-D graphics, it is up to applications
developers to provide the cool applications. Have fun.

Future technical articles will zero in on OpenGL specifics. Stay tuned.

Bibliography

OpenGL Reference Manual, The Official Reference Document for OpenGL, Release 1. OpenGL Architecture
Review Board, 1992, Addison Wesley, ISBN 0 -201-63276-4.

OpenGL Programming Guide, The Official Guide to Learning OpenGL, Release 1 . OpenGL Architecture
Review Board, 1992, Addison Wesley, ISBN 0 -201-63274-8.

Windows NT SDK, Windows NT OpenGL documentation (pre-release)

