
GDI Objects

Ron Gery
Microsoft Developer Network Technology Group

Created: March 20, 1992

Abstract

This article discusses how to create, select, and delete graphics device interface (GDI) objects such as
pens, brushes, fonts, bitmaps, palettes, and regions. Sprinkled throughout are general guidelines for using
objects efficiently and for making basic use decisions.

Creation

Each type of object has a routine or a set of routines that is used to create that object.

Pens are created with the CreatePen and the CreatePenIndirect functions. An application can use either
function to define three pen attributes: style, width, and color. The background mode during output
determines the color (if any) of the gaps in any nonsolid pen. The PS_INSIDEFRAME style allows dithered
wide pens and a different mechanism for aligning the pen on the outside of filled primitives.

Brushes are created with the CreateSolidBrush, CreatePatternBrush, CreateHatchBrush ,
CreateDIBPatternBrush, and CreateBrushIndirect functions. Unlike other objects, brushes have
distinct types that are not simply attributes. Hatch brushes are special because they use the current
background mode (set with the SetBkMode function) for output.

Fonts are created with the CreateFont and CreateFontIndirect functions. An application can use either
function to specify the 14 attributes that define the desired size, shape, and style of the logical font.

Bitmaps are created with the CreateBitmap, CreateBitmapIndirect, CreateCompatibleBitmap, and
CreateDIBitmap functions. An application can use all four functions to specify the dimensions of the
bitmap. An application uses the CreateBitmap and CreateBitmapIndirect functions to create a bitmap
of any color format. The CreateCompatibleBitmap and CreateDIBitmap functions use the color format
of the device context. A device supports two bitmap formats: monochrome and device-specific color. The
monochrome format is the same for all devices. Using an output device context (DC) creates a bitmap with
the native color format; using a memory DC creates a bitmap that matches the color format of the bitmap
currently selected into that DC. (The DC’s color format changes based on the color format of the currently
selected bitmap.)

Palette objects are created with the CreatePalette function. Unlike pens, brushes, fonts, and bitmaps, the
logical palette created with this function can be altered later with the SetPaletteEntries function or, when
appropriate, with the AnimatePalette function.

Regions can be created with the CreateRectRgn , CreateRectRgnIndirect , CreateRoundRectRgn ,
CreateEllipticRgn, CreateEllipticRgnIndirect, CreatePolygonRgn , and CreatePolyPolygonRgn
functions. Internally, the region object that each function creates is composed of a union of rectangles
with no vertical overlap. Regions created based on nonrectangular primitives simulate the complex shape
with a series of rectangles, roughly corresponding to the scanlines that would be used to paint the
primitive. As a result, an elliptical region is stored as many short rectangles (a bit fewer than the height of
the ellipse), which leads to more cumbersome and slower region calculations and clipping. Coordinates
used for creating regions are not specified in logical units as they are for other objects. The graphics
device interface (GDI) uses them without transformation. GDI translates coordinates for clip regions to be
relative to the upper-left corner of a window when applicable. Region objects can be altered with the
CombineRgn and OffsetRgn functions.

What Happens During Selection

Selecting a logical object into a DC involves converting the logical object into a physical object that the
device driver uses for output. This process is called realization. The principle is the same for all objects,

but the actual operation is different for each object type. When an application changes the logical device
mapping of a DC (by changing the mapping mode or the window or viewport definition), the system re-
realizes the currently selected pen and font before they are used the next time. Changing the DC’s
coordinate mapping scheme alters the physical interpretation of the logical pen’s width and the logical
font’s height and width by essentially reselecting the two objects.

Pens are the simplest of objects. An application can use three attributes to define a logical pen—width,
style, and color. Of these, the width and the color are converted from logical values to physical values. The
width is converted based on the current mapping mode (a width of 0 results in a pen with a one-pixel
width regardless of mapping mode), and the color is mapped to the closest color the device can represent.
The physical color is a solid color (that is, it has no dithering). If the pen style is set to PS_INSIDEFRAME
and the physical width is not 1, however, the pen color can be dithered. The pen style is recorded in the
physical object, but the information is not relevant until the pen is actually used for drawing.

Logical brushes have several components that must be realized to make a physical brush. If the brush is
solid, a physical representation must be calculated by the device driver; it can be a dithered color
(represented as a bitmap with multiple colors that when viewed by the human eye approximates a solid
color that cannot be shown as a single pixel on the device), or it can be a solid color. Pattern brush
realization involves copying the bitmap that defines the pattern and, for color patterns, ensuring that the
color format is compatible with the device. Usually, the device driver also builds a monochrome version of
a color pattern for use with monochrome bitmaps. With device-independent bitmap (DIB) patterns, GDI
converts the DIB into a device-dependent bitmap using SetDIBits before it passes a normal pattern brush
to the device driver. The selection of a DIB pattern brush with a two -color DIB and DIB_RGB_COLORS into
a monochrome DC is a special case; GDI forces the color table to have black as index 0 and white as index
1 to maintain foreground and background information. The device driver turns hatched brushes into
pattern brushes using the specified hatch scheme; the foreground and background colors at the time of
selection are used for the pattern. All brush types can be represented at the device-driver level as bitmaps
(usually 8-by-8) that are repeatedly blted as appropriate. To allow proper alignment of these bitmaps, GDI
realizes each physical brush with a brush origin. The default origin is (0,0) and can be changed with the
SetBrushOrg function (discussed in more detail below).

The GDI component known as the font mapper examines every physical font in the system to find the one
that most closely matches the requested logical font. The mapper penalizes any font property that does
not match. The physical font chosen is the one with the smallest penalty. The possible physical fonts that
are available are raster, vector, TrueType™ fonts installed in the system, and device fonts built into or
downloaded to the output device. The logical values for height and width of the font are converted to
physical units based on the current mapping mode before the font mapper examines them.

Selecting a bitmap into a memory DC involves nothing more than performing some error checking and
setting a few pointers. If the bitmap is compatible with the DC and is not currently selected elsewhere, the
bits are locked in memory and the appropriate fields are set in the DC. Most GDI functions treat a memory
DC with a selected bitmap as a regular device DC; only the device driver acts differently, based on
whether the output destination is memory or the actual device. The color format of the bitmap defines the
color format of the memory DC. When a memory DC is created with CreateCompatibleDC, the default
monochrome bitmap is selected into it, and the color format of the DC is monochrome. When an
appropriate color bitmap (one whose color resolution matches that of the device) is selected into the DC,
the color format of the DC changes to reflect this event. This behavior affects the result of the
CreateCompatibleBitmap function, which creates a monochrome bitmap for a monochrome DC and a
color bitmap for a color DC.

Palettes are not automatically realized during the selection process. The RealizePalette function must be
explicitly called to realize a selected palette. If a palette is realized on a nonpalette device, nothing
happens. On a palette device, the logical palette is color-matched to the hardware palette to get the best
possible matching. Subsequent references to a color in the logical palette are mapped to the appropriate
hardware palette color.

Nothing is actually realized when a clip region is selected into a DC. A copy of the region is made and
placed in the DC. This new clip region is then intersected with the current visible region (computed by the
system and defining how much of the window is visible on the screen), and the DC is ready for drawing.
Calling SelectObject with a region is equivalent to using the SelectClipRgn function.

Memory Usage

The amount of memory each object type consumes in GDI’s heap and in the global memory heap depends

on the type of the object. Figures below apply to Windows version 3.1 and might change in future
versions.

The following table describes memory used for storing logical objects.

When an object is selected into a DC, it may have corresponding physical (realized) information that is
stored globally and in GDI’s heap. The table below details that use. The size of realized versions of objects
that devices maintain is determined by the device.

As a result of the font caching scheme, several variables determine how much memory a realized font
uses. If two logical fonts are mapped to the same physical font, only one copy of the actual font is
maintained. For TrueType fonts, glyph data is loaded only upon request, so the size of the physical font
grows (memory permitted) as more characters are needed. When the font can grow no larger, characters
are cached to use the available space. The font data stored for a single physical font ranges from 48 bytes
for a hardware font to 120K for a large bitmapped font.

Physical pens and brushes are not deleted from the system until the corresponding object is deleted. The
physical object that corresponds to a selected logical object is locked in GDI’s heap. (It is unlocked upon
deselection.) Similarly, a font "instance" is cached in the system to maintain a realization of a specific
logical font on a specific device with a specific coordinate mapping. When the logical font is deleted, all of
its instances are removed as well.

When the clip region intersects with the visible region, the resulting intersection is roughly the same size
as the initial clip region. This is always the case when the DC belongs to the topmost window and the clip
region is within the window’s boundary.

Creating vs. Recreating

Object type GDI heap use (in bytes) Global memory use (in bytes)

pen 10 + sizeof(LOGPEN) 0

brush 10 + sizeof(LOGBRUSH) + 6 0

pattern brush same as brush + copy of bitmap

font 10 + sizeof(LOGFONT) 0

bitmap 10 + 18 32 + room for bits

palette 10 + 10 4 + (10 * num entries)

rectangular region 10 + 26 0

solid complex region rect region + (6 * (num scans –1)) 0

region with hole region + (2 * num scans with hole) 0

Object type GDI heap use (in bytes) Global memory use

pen 10 + 8 + device info 0

brush 10 + 14 + device info 0

font 55 (per realization) font data (per physical font)

bitmap 0 0

palette 0 0

region intersection of region with visible
region

0

If an application uses an object repeatedly, should the object be created once and cached by the
application, or should the application recreate the object every time it is needed and delete it when that
part of the drawing is complete? Creating on demand is simpler and saves memory in GDI’s heap (objects
do not remain allocated for long). Caching the objects within an application involves more work, but it can
greatly increase the speed of object selection and realization, especially for fonts and sometimes for
palettes.

The speed gains are possible because GDI caches physical objects. Although realizing a new logical pen or
brush simply involves calling the device driver, realizing a logical font involves a cumbersome comparison
of the logical font with each physical font available in the system. An application that wants to minimize
font-mapping time should cache logical font handles that are expected to be used again. All previous font-
mapping information is lost when a logical font handle is deleted; a recreated logical font must be realized
from scratch.

Applications should cache palette objects for two reasons (both of which apply only on palette devices).
Most importantly, because bitmaps on palette devices are stored based on a specific logical bitmap, using
a different palette alters the bitmap’s coloration and meaning. The second reason is a speed issue; the
foreground realization of a palette is cached by GDI and is not calculated after the first realization. A new
foreground realization must be computed from scratch for a newly created palette (or a palette altered by
the SetPaletteEntries function or unrealized with the UnrealizeObject function).

Stock Objects

During initialization, GDI creates a number of predefined objects that any application can use. These
objects are called stock objects. With the exception of regions and bitmaps, every object type has at least
one defined stock object. An application calls the GetStockObject function to get a handle to a stock
object, and the returned handle is then used as a standard object handle. The only difference is that no
new memory is used because no new object is created. Also, because the system owns the stock objects,
an application is not responsible for deleting the object after use. Calling the DeleteObject function with a
stock object does nothing.

Several stock fonts are defined in the system, the most useful being SYSTEM_FONT. This font is the
default selected into a DC and is used for drawing the text in menus and title bars. Because this object
defines only a logical font, the physical font that is actually used depends on the mapping mode and on
the resolution of the device. A screen DC with a mapping mode of MM_TEXT has the system font as the
physical font, but if the mapping mode is changed or if a different device is used, the physical font is no
longer guaranteed to be the same. A change of behavior for Windows version 3.1 is that a stock font is
never affected by the current mapping mode; it is always realized as if MM_TEXT were being used. Note
that a font created by an application as a copy of a stock font does not have this immunity to scaling.

No stock bitmap in the system is accessible by means of the GetStockObject function, but GDI uses a
default one-by-one monochrome bitmap as a stock object. This default bitmap is selected into a memory
DC during creation of that DC. The bitmap’s handle can be obtained by selecting a bitmap into a freshly
minted memory DC; the return value from the SelectObject function is the stock bitmap.

Error Handling

The two common types of errors associated with objects are failure to create and failure to select. Both are
most commonly associated with low-memory conditions.

During the creation process, GDI allocates a block of memory to store the logical object information. When
the heap is full, applications cannot create any more objects until some space is freed. Bitmap creation
tends to fail not because GDI’s heap is full but because available global memory is insufficient for storing
the bits themselves. Palettes also have a block of global memory that must be allocated by GDI to hold the
palette information. The standard procedure for handling a failed object creation is to use a corresponding
stock object in its place, although a failed bitmap creation is usually more limiting. An application usually
warns the user that memory is low when an object creation or selection fails.

Out-of-memory conditions can also occur when a physical object is being realized. Realization also involves
GDI allocating heap memory, and realizing fonts usually involves global memory as well. If the object was
realized in the past for the same DC, new allocation is unnecessary (see the "Creating vs. Recreating"
section). If a call to SelectObject returns an error (0), no new object is selected into the DC, and the

previously selected object is not deselected.

Another possible error applies only to bitmaps. Attempting to select a bitmap with a color format that does
not match the color format of the DC results in an error. Monochrome bitmaps can be selected into any
memory DC, but color bitmaps can be selected only into a memory DC of a device that has the same color
format. Additionally, bitmaps can be selected only into memory DCs; they cannot be selected into a DC
connected to an actual output device or into metafile DCs.

Some object selections do not fail. Selecting a default object (WHITE_BRUSH, BLACK_PEN, SYSTEM_FONT,
or DEFAULT_PALETTE stock objects) into a screen DC or into a screen-compatible memory DC does not fail
when the mapping mode is set to MM_TEXT. Also, a bitmap with a color format matching a memory DC
always successfully selects into that DC. Palette selection has no memory requirements and always
succeeds.

Deletion

All applications should delete objects when they are no longer needed. To delete an object properly, first
deselect it from any DC into which it was previously selected. To deselect an object, an application must
select a different object of the same type into the DC. Common practice is to track the original object that
was selected into the DC and select it back when all work is accomplished with the new object. When a
region is selected into a DC with the SelectObject or SelectClipRgn function, GDI makes a copy of the
object for the DC, and the original region can be deleted at will.

hNewPen = CreatePen(1, 1, RGB(255, 0, 0));
if (hNewPen)
 hOldPen = SelectObject(hDC, hNewPen);
else
 hOldPen = NULL; // no selection
 . // drawing operations
 . // (could be with old pen)
 .
if (hOldPen)
 SelectObject(hDC, hOldPen); // deselect hNewPen (if selected)
if (hNewPen)
 DeleteObject(hDC, hNewPen); // delete pen if created

An alternative method is to select in a stock object returned from the GetStockObject function. This
approach is useful when it is not convenient to track the original object. A DC is considered "clean" of
application-owned objects when all currently selected objects are stock objects. The three exceptions to
the stock object rule are fonts (only the SYSTEM_FONT object should be used for this purpose); bitmaps,
which do not have a stock object defined (the one-by-one monochrome stock bitmap is a constant object
that is the default bitmap of a memory DC); and regions, which have no stock object and have no need for
one.

hNewPen = CreatePen(1, 1, RGB(255, 0, 0));
if (hNewPen)
{
 if (SelectObject(hDC, hNewPen))
 {
 .
 . // drawing operations
 .
 SelectObject(hDC, GetStockObject(BLACK_PEN));
 }
 DeleteObject(hDC, hNewPen);
}

The rumor that an application should never delete a stock object is far from the truth. Calling the
DeleteObject function with a stock object does nothing. Consequently, an application need not ensure
that an object being deleted is not a stock object.

UNREALIZEOBJECT

The UnrealizeObject function affects only brushes and palettes. As its name implies, the
UnrealizeObject function lets an application force GDI to re-realize an object from scratch when the
object is next realized in a DC.

The UnrealizeObject function lets an application reset the origin of the brush. When a patterned,
hatched, or dithered brush is used, the device driver handles it as an eight-by-eight bitmap. During use,

the driver aligns a point in the bitmap, known as the brush origin, to the upper-left corner of the DC. The
default brush origin is (0,0). If an application wants to change the brush origin, it uses the SetBrushOrg
function. This function does not change the origin of the current brush; it sets the origin of the brush for
the next time that the brush is realized. The origin of a brush that has never been selected into a DC can
be set as follows:

// Create the brush.
hBrush = CreatePatternBrush(.....);
// Set the origin as needed.
SetBrushOrg(hDC, X, Y);
// Select (and realize) the brush with the chosen origin.
SelectObject(hDC, hBrush);

If, on the other hand, the brush is currently selected into a DC, calling the SetBrushOrg function alone
accomplishes nothing. Because the new origin does not take effect until the brush is realized anew, the
application must force this re-realization by using the UnrealizeObject function before the brush is
reselected into a DC. The following sample code changes the origin of a brush that is initially selected into
a DC:

// Deselect the brush from the DC.
hBrush = SelectObject(hDC, GetStockObject(BLACK_BRUSH));
// Set a new origin.
SetBrushOrg(hDC, X, Y);
// Unrealize the brush to force re-realization.
UnrealizeObject(hBrush);
// Select (and hence re-realize) the brush.
SelectObject(hDC, hBrush);

The UnrealizeObject function can also be called for a palette object, although the effect is a bit more
subtle. (As is common with the palette functions, nothing happens on a nonpalette device.) The function
forces the palette to be realized from scratch the next time the palette is realized, thereby ignoring any
previous mapping. This is useful in situations in which an application expects that the palette will realize
differently the next time around, perhaps matching more effectively with a new system palette and not
forcing a system palette change. Any bitmaps created with the original realization of the palette are no
longer guaranteed to be valid.

Special Cases

Palette objects are selected into DCs using the SelectPalette function. The reason for this additional,
seemingly identical, function is that palette selection has an additional parameter that defines whether the
palette is being selected as a foreground or as a background palette, which affects palette realization on
palette devices. Calling the SelectObject function with a palette returns an error. Palettes are deleted
using the DeleteObject function.

A clip region can be selected into a DC by calling either the SelectClipRgn or the SelectObject function.
Both functions perform identically with the exception of selecting a NULL handle in place of a region.
SelectClipRgn can be used to clear the current clipping state by calling the function as follows:

SelectClipRgn(hDC, NULL);

This is not the same as selecting an empty region. Substituting the SelectObject function but maintaining
the parameters in the code sample above results in an error.

