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Abstract 

OpenGL, an industry-standard three-dimensional software interface, is now a part of Microsoft® Windows 
NT™ version 3.5. As a hardware-independent interface, the operating system needs to provide pixel 
format and rendering context management functions. Windows NT provides a generic graphics device 
interface (GDI) implementation for this as well as a device implementation. This article details these 
implementations, OpenGL/NT functions, and tasks that applications need to accomplish before OpenGL 
commands can be used to render images on the device surface. 

Introduction 

We all knew that it was just a matter of time before three-dimensional (3 -D) graphics would become part 
of a Microsoft operating system. Well, it finally happened. Version 3.5 of Microsoft® Windows NT™ now 
includes OpenGL (OpenGL/NT). So just what is OpenGL? Originally developed by Silicon Graphics, Inc., it 
is an industry-standard procedural software interface for producing 3-D graphics. It does so by providing 
roughly 120 commands to draw various primitives including points, lines, and polygons in various modes. 
With OpenGL, you can create high-quality still and animated 3-D color images. So now you are an OpenGL 
expert, right? If you feel that you don’t qualify for that distinction, go to the bookstore and pick up the 
OpenGL Programming Guide and the OpenGL Reference Manual . Both are authored by the OpenGL 
Architecture Review Board. They are required reading if you plan to use OpenGL. (For the ISBN numbers 
for these manuals, see the "Bibliography" section at the end of this article.) 

This article is for anyone who has an interest in OpenGL/NT. Whether you have been writing OpenGL 
programs for years or are just getting started, this article is for you. OpenGL is a hardware-independent 3-
D interface. Because of this, it does not include commands for the initialization and management of 
devices’ display surfaces. This is the responsibility of the operating system within which you find OpenGL. 
So you can see that, irrespective of OpenGL experience, anyone new to OpenGL/NT needs to understand 
the details of the implementation specific to Windows NT. At this point, your hopes may have been 
dashed. You may have been looking for an article that describes how to create 3-D images. Don’t become 
too depressed. Future articles will deal with this, but, as some say, "You need to learn to walk before you 
run." Everyone using OpenGL/NT needs to understand how to get the 3-D images on the device surface. 

This article will frequently discuss pixel format and rendering context management. Successfully managing 
these tasks provides the connection between the hardware independence of OpenGL/NT. Two mechanisms 
are provided in Windows NT to provide this connection to OpenGL—pixel format manipulation APIs and 
WGL APIs. WGL APIs provide a mechanism for managing the OpenGL rendering context. 

MYGL: A Sample OpenGL/NT Application 

MYGL is a sample OpenGL/NT application written in C++ using the Microsoft Foundation Class Library 
(MFC). A class, COpenGL, wraps the WGL and pixel format APIs and also provides numerous utility 
functions for OpenGL/NT applications. Code samples used in this article are taken from MYGL. The MYGL 
user interface permits you to specify and set the pixel format of a window (MYGL is an SDI [single-
document interface] application), enumerate the pixel formats, and query the current pixel format 
properties. 

Generic vs. Device Format, AKA OpenGL/NT Architecture 

It is always helpful to understand the architecture of a new feature. From an application developer’s 
perspective, a good understanding of the architecture eases the application development process. Design 
and implementation decisions can be made with intelligence instead of confusion. If you buy that, take a 



look at Figure 1. It is the infamous architecture diagram with an OpenGL/NT flavor this time. 



 

Figure 1. OpenGL/NT architecture 

As you work through this section, don’t worry if you don’t understand everything. Much of what is 
discussed briefly will be discussed in detail later. You might want to return to this section periodically as 
you progress through the article. 

If you have a machine like mine (a true antique), OpenGL applications use the generic format. All of the 
pixel format management, double buffering, and rendering context management is handled by the generic 
OpenGL module and GDI. If you have a machine with a sophisticated video display adapter and a video 
display driver that supports OpenGL/NT, you are indeed fortunate. I’m sure I could round up several dozen 
Dr. GUI T-shirts if you want to consider a trade! 

More seriously, OpenGL/NT calls are intercepted by the installable client driver. The client driver packages 
these OpenGL and WGL commands and sends them to the video display driver. The video display driver is 
linked with libraries that contain dispatch functions, OpenGL code, and some portable low-level drawing 
support functions. The big win with OpenGL support in the video driver and appropriate hardware is speed. 
Rendering can be accelerated tremendously. Figure 2 broadly illustrates the differences between generic 
and device formats. 

 

Figure 2. Generic and device formats 

To illustrate the difference between the generic and device formats a bit more, let’s discuss the new pixel 
format API, DescribePixelFormat. 



DescribePixelFormat obtains pixel format information about a given device. This information includes 
values such as the number of color bitplanes, the type of pixel data, and so on (pixel format will be 
discussed in more detail later). An application calls DescribePixelFormat (found in GDI32.DLL). In the 
generic format, DescribePixelFormat takes the pixel format index and races through roughly 300 lines of 
code, filling in a PIXELFORMATDESCRIPTOR structure based on the index. The function then returns the 
maximum number of generic pixel formats available. In the device format, the pixel format index is 
compared to the number of device formats (if any). If the pixel format is determined to be a device-
supported format, the driver function, DrvDescribePixelFormat, is called. After returning from the 
driver, DescribePixelFormat returns the sum of the generic formats and the device formats. 

A discussion of the generic format would not be complete without mentioning its limitations. The following 
list of limitations is taken from the Windows NT OpenGL Help file:  

l There are printing limitations. 

An application cannot directly print an OpenGL image to a monochrome printer. There is, however, 
a workaround for this situation. An application can directly print an OpenGL image to a color printer 
that offers four or more bits of color information per pixel. 

l OpenGL and GDI graphics cannot be mixed in a double-buffered window. 

An application can draw both OpenGL graphics and GDI graphics directly into a single-buffered 
window, but not into a double-buffered window. 

l There are no per-window hardware color palettes. 

Windows NT has a single system hardware color palette, which applies to the whole screen. An 
OpenGL window cannot have its own hardware palette. It can have its own logical palette. To do so, 
it must become a palette -aware application. 

l There is no direct support for the Clipboard, DDE, metafiles, or OLE. 

A window with OpenGL graphics does not directly support these Windows NT capabilities. There are 
workarounds, however, for working with the Clipboard. 

l The Inventor 2.0 C++ class library is not included. 

The Inventor class library, built on top of OpenGL, provides higher-level constructs for programming 
3-D graphics. It is not included in version 1.0 of Windows NT OpenGL. 

l There is no support for several pixel format features: overlay and underlay layers, stereoscopic 
images, alpha bitplanes, and auxiliary buffers. 

There is, however, support for several ancillary buffers: stencil buffer, accumulation buffer, back 
buffer (double buffering), and depth (z-axis) buffer. 

Pixel Format Management 

The OpenGL frame buffer is nothing more than the sum of all the buffers utilized by OpenGL. These 
include color buffers, depth buffer, stencil buffer, and an accumulation buffer. Color buffers contain pixel 
data that is either color indexed (don’t interpret this as "Windows palette") or RGBA values (A, or alpha, is 
used as a measure of opacity). The depth buffer (z buffer) contains depth values for each pixel. Pixels with 
larger depth values are "deeper," and a pixel with a smaller value would overwrite the deeper pixel if they 
both occupied the same location. The stencil buffer restricts drawing to specific screen locations. The 
accumulation buffer is used for accumulating numerous images into a composite image. 

OpenGL/NT has implemented many of these buffers in the generic format. Single and double buffering are 
supported. Stereoscopic buffering is not supported. The depth, stencil, and accumulation buffers are also 
available. To effectively use these buffers, the pixel format must be specified. Every window used by 
OpenGL has a pixel format. The following sections describe the structures, functions, and issues related to 
pixel format management. 

PIXELFORMATDESCRIPTOR 

The PIXELFORMATDESCRIPTOR structure below is used to describe a pixel format in Windows NT. The 
comments are about the use of the structure in the generic format. Hardware manufacturers may enhance 
parts of OpenGL, and may support some pixel format properties not supported in the generic format. 

typedef struct tagPIXELFORMATDESCRIPTOR 



{ 
    WORD  nSize;                  //sizeof(PIXELFORMATDESCRIPTOR) 
    WORD  nVersion;               //1 
    DWORD dwFlags; 
    BYTE  iPixelType;             //rgba or color indexed 
    BYTE  cColorBits;             //# of color bitplanes 
    BYTE  cRedBits;               //# red bitplanes 
    BYTE  cRedShift;              //shift count for red bitplanes 
    BYTE  cGreenBits;             //# green bitplanes 
    BYTE  cGreenShift;            //shift count for green bitplanes 
    BYTE  cBlueBits;              //# blue bitplanes 
    BYTE  cBlueShift;             //shift count for blue bitplanes 
    BYTE  cAlphaBits;             //not used in generic format 
    BYTE  cAlphaShift;            //not used in generic format 
    BYTE  cAccumBits;             //total # accum buffer bitplanes 
    BYTE  cAccumRedBits;          //# red bitplanes in accum buffer 
    BYTE  cAccumGreenBits;        //# green bitplanes in accum buffer  
    BYTE  cAccumBlueBits;         //# blue bitplanes in accum buffer 
    BYTE  cAccumAlphaBits;        //# alpha bitplanes in accum buffer  
    BYTE  cDepthBits;             //depth of depth (z) buffer 
    BYTE  cStencilBits;           //depth of stencil buffer 
    BYTE  cAuxBuffers;            //not used in generic format 
    BYTE  iLayerType;             //PFD_MAIN_PLANE only in generic format 
    BYTE  bReserved;              //must be 0 
    DWORD dwLayerMask; 
    DWORD dwVisibleMask; 
    DWORD dwDamageMask; 
} PIXELFORMATDESCRIPTOR; 
; 

The following, taken from the OpenGL/NT Help file, describes the members of 
PIXELFORMATDESCRIPTOR. This is long, but it is very important to understanding pixel formats and 
rendering contexts. So if you are not already familiar with PIXELFORMATDESCRIPTOR, read on. 

Member Description

nSize Specifies the size of this data structure. This value should be 
set to sizeof(PIXELFORMATDESCRIPTOR).

nVersion Specifies the version of this data structure. This value should 
be set to 1.

dwFlags A set of bit flags that specify properties of the pixel buffer. 
The properties are generally not mutually exclusive. The 
following bit flag constants are defined:

    Value Meaning

    PFD_DRAW_TO_WINDOW The buffer can draw to a window or device surface.

    PFD_DRAW_TO_BITMAP The buffer can draw to a memory bitmap.

    PFD_SUPPORT_GDI The buffer supports GDI drawing. This flag and 
PFD_DOUBLEBUFFER are mutually exclusive in the release 
1.0 generic implementation.

    PFD_SUPPORT_OPENGL The buffer supports OpenGL drawing.

    PFD_GENERIC_FORMAT The pixel format is supported by the GDI software 
implementation. That implementation is also known as the 
generic implementation. If this bit is clear, the pixel format 
is supported by a device driver or hardware.

    PFD_NEED_PALETTE The buffer uses RGBA pixels on a palette-managed device. A 
logical palette is required to achieve the best results for this 
pixel type. Colors in the palette should be specified 
according to the values of the cRedBits, cRedShift, 
cGreenBits, cGreenShift, cBluebits, and cBlueShift members. 
The palette should be created and realized in the device 
context (DC) before calling wglMakeCurrent.

    PFD_DOUBLEBUFFER The buffer is double-buffered. This flag and 
PFD_SUPPORT_GDI are mutually exclusive in the release 1.0 



 

In addition, the following bit flags can be specified when calling ChoosePixelFormat. 

generic implementation.

    PFD_STEREO The buffer is stereoscopic. This flag is not supported in the 
release 1.0 generic implementation.

    PFD_NEED_SYSTEM_PALETTE This flag is used by OpenGL hardware that supports only one 
hardware palette. To use hardware accelerations in such 
hardware, the hardware palette has to be in a fixed order 
(for example, 3 -3-2) in RGBA mode or match the logical 
palette in color index mode. The current 
PFD_NEED_PALETTE flag does not have such a requirement. 
That is, if only PFD_NEED_PALETTE is set, an application can 
use a logical 3 -3-2 palette; the logical-to-system-palette 
mapping is performed by the system. The system palette 
may not be 3-3-2 and may not have all the logical palette 
colors. However, if PFD_NEED_SYSTEM_PALETTE is set, an 
application should take over the system palette by calling 
SetSystemPaletteUse to force a 1-1 logical-to-system-
palette mapping. If an application chooses to ignore 
PFD_NEED_SYSTEM_PALETTE because it does not want to 
mess up desktop colors, it will not get maximum 
performance but it should still work. 

The PFD_NEED_SYSTEM_PALETTE flag is not needed if the 
OpenGL hardware supports multiple hardware palettes and 
the driver can allocate spare hardware palettes for OpenGL. 

The generic pixel formats do not have this flag set. 

Value Meaning

PFD_DOUBLE_BUFFER_DONTCARE The requested pixel format can be either single- or double-
buffered.

PFD_STEREO_DONTCARE The requested pixel format can be either monoscopic or 
stereoscopic.

iPixelType Specifies the type of pixel data. The following types are 
defined:

    Value Meaning

    PFD_TYPE_RGBA RGBA pixels. Each pixel has four components: red, green, 
blue, and alpha.

    PFD_TYPE_COLORINDEX Color index pixels. Each pixel uses a color index value

    cColorBits Specifies the number of color bitplanes in each color buffer. 
For RGBA pixel types, it is the size of the color buffer 
excluding the alpha bitplanes. For color index pixels, it is the 
size of the color index buffer.

    cRedBits Specifies the number of red bitplanes in each RGBA color 
buffer.

    cRedShift Specifies the shift count for red bitplanes in each RGBA color 
buffer.

    cGreenBits Specifies the number of green bitplanes in each RGBA color 
buffer.

    cGreenShift Specifies the shift count for green bitplanes in each RGBA 



color buffer.

    cBlueBits Specifies the number of blue bitplanes in each RGBA color 
buffer.

    cBlueShift Specifies the shift count for blue bitplanes in each RGBA 
color buffer.

    cAlphaBits Specifies the number of alpha bitplanes in each RGBA color 
buffer. Alpha bitplanes are not supported in the release 1.0 
generic implementation.

    cAlphaShift Specifies the shift count for alpha bitplanes in each RGBA 
color buffer. Alpha bitplanes are not supported in the release 
1.0 generic implementation.

    cAccumBits Specifies the total number of bitplanes in the accumulation 
buffer.

    cAccumRedBits Specifies the number of red bitplanes in the accumulation 
buffer.

    cAccumGreenBits Specifies the number of green bitplanes in the accumulation 
buffer.

    cAccumBlueBits Specifies the number of blue bitplanes in the accumulation 
buffer.

    cAccumAlphaBits Specifies the number of alpha bitplanes in the accumulation 
buffer.

    cDepthBits Specifies the depth of the depth (z-axis) buffer.

    cStencilBits Specifies the depth of the stencil buffer.

    cAuxBuffers Specifies the number of auxiliary buffers. Auxiliary buffers 
are not supported in release 1.0 of the generic 
implementation.

    iLayerType Specifies the type of layer. Although the following values are 
defined, version 1.0 supports only the main plane (there is 
no support for overlay or underlay planes):

         Value Meaning

         PFD_MAIN_PLANE The layer is the main plane.

         PFD_OVERLAY_PLANE The layer is the overlay plane.

         PFD_UNDERLAY_PLANE The layer is the underlay plane.

         bReserved Not used. Must be zero.

         dwLayerMask Specifies the layer mask. The layer mask is used in 
conjunction with the visible mask to determine if one layer 
overlays another.

         dwVisibleMask Specifies the visible mask. The visible mask is used in 
conjunction with the layer mask to determine if one layer 
overlays another. If the result of the bitwise AND of the 
visible mask of a layer and the layer mask of a second layer 
is nonzero, then the first layer overlays the second layer, 
and a transparent pixel value exists between the two layers. 
If the visible mask is 0, the layer is opaque.

         dwDamageMask Specifies whether more than one pixel format shares the 



 
Pixel Formats 

The generic implementation of OpenGL/NT supports 24 different pixel formats. Although each format is 
identified by an index from 1 to 24, they are not constant. That is, never rely on the ordering of the 
indexes. The pixel formats are characterized by several properties (see Figure 3). 

 

Figure 3. Pixel format properties 

The primary property by which they are organized is the number of bits per pixel (BPP). Five bitplane 
organizations are supported, including 32 BPP, 24 BPP, 16 BPP, 8 BPP, and 4 BPP. Eight pixel formats are 
defined for the number of bits per pixel specified by the display driver. These are referred to as the native 
formats. The remaining 16 pixel formats (referred to as non-native formats) are divided evenly between 
the other bitplane organizations and are supplied for bitmap support. The formats are then organized by 
the pixel type (RGBA or color index), then buffering (single or double), and then the depth of the depth (z) 
buffer (32 or 16). Given this, you would think that there are 40 generic formats. However, 16 of the non-
native formats are eliminated because it doesn’t make sense to double buffer to a bitmap. Table 1 lists all 
of the native formats. 

Table 1. Native Pixel Formats 

 

Table 2 lists the remaining pixel formats. These are repeated for each non-native BPP format. 

Table 2. Non-Native Pixel Formats 

same frame buffer. If the result of the bitwise AND of the 
damage masks between two pixel formats is nonzero, then 
they share the same buffers.

Bits/Pixel Pixel Type Buffering Depth (z) buffer

native PFD_TYPE_RGBA Single 32

native PFD_TYPE_RGBA Single 16

native PFD_TYPE_RGBA Double 32

native PFD_TYPE_RGBA Double 16

native PFD_TYPE_COLORINDEX Single 32

native PFD_TYPE_COLORINDEX Single 16

native PFD_TYPE_COLORINDEX Double 32

native PFD_TYPE_COLORINDEX Double 16

Bits/Pixel Pixel Type Buffering Depth (z) buffer

non-native PFD_TYPE_RGBA Single 32



 
Enumerating Pixel Formats 

Enumerating pixel formats is essential to finding a format that is appropriate for an application. 
Applications are responsible for defining "appropriate." MYGL looks for a native format. The formats are 
enumerated in response to one of two button clicks—one increases the pixel format index and the other 
decreases the index. The following code from PIXFORM.CPP demonstrates the enumeration technique used 
in MYGL. The m_nNextID member variable is used as an index of the pixel formats. 

void CPixForm::OnClickedLastPfd() 
{ 
  COpenGL gl; 
  PIXELFORMATDESCRIPTOR pfd; 
  // 
  //Get the hwnd of the view window. 
  // 
  HWND hwndview = GetViewHwnd(); 
  // 
  //Get a DC associated with the view window. 
  // 
  HDC   hdc   = ::GetDC(hwndview); 
  int nID = (m_nNextID > 1) ?  m_nNextID-- : 1; 
  // 
  //Get a description of the pixel format. If it is valid, then go and  
  //update the controls in the dialog box, otherwise do nothing.  
  // 
  if (gl.DescribePixelFormat(hdc, nID, sizeof(PIXELFORMATDESCRIPTOR), &pfd)) 
    UpdateDlg(&pfd); 
  // 
  //Release the DC. 
  // 
  ::ReleaseDC(hwndview, hdc); 
} 

Pixel Format Functions  

Four functions, shown in Table 3, have been implemented to provide management of pixel formats. 

Table 3. Pixel Format Functions 

 

Figure 4 illustrates a general method for calling these functions. 

non-native PFD_TYPE_RGBA Single 16

non-native PFD_TYPE_COLORINDEX Single 32

non-native PFD_TYPE_COLORINDEX Single 16

Win32 Function Description

ChoosePixelFormat Obtains a device context's pixel format that is the closest match to a 
specified pixel format.

SetPixelFormat Sets a window’s or bitmap’s current pixel format to the pixel format 
specified by a pixel format index.

GetPixelFormat Obtains the pixel format index of a window’s or bitmap’s current pixel 
format.

DescribePixelFormat Given a device context and a pixel format index, fills in a 
PIXELFORMATDESCRIPTOR data structure with the pixel format's 
properties.



 

Figure 4. Calling pixel format functions 

An application generally knows that it will be using double buffering, writing to the screen, or supporting 
GDI. This is the type of information that would be found in the top box of Figure 4 in 
PIXELFORMATDESCRIPTOR. The application can either call ChoosePixelFormat, which attempts to 
match the requested pixel format with the best supported (device or generic) pixel format available, or it 
can call its own pixel format matching function. The following list describes how ChoosePixelFormat 
attempts to match the requested pixel format to the pixel formats available:  

l First, it attempts to find a pixel format that satisfies the requested attributes: 

PFD_DRAW_TO_WINDOW 
PFD_DRAW_TO_BITMAP 
PFD_SUPPORT_GDI 
PFD_SUPPORT_OPENGL  
PFD_TYPE_RGBA 
PFD_TYPE_COLORINDEX 
PFD_DOUBLEBUFFER 
PFD_STEREO 

l Then it tries to find the best match among the following attributes: 

cColorBits 
cAlphaBits 
cAccumBits 
cDepthBits 
cStencilBits 
cAuxBuffers 
iLayerType 

l Finally, device pixel formats are given preference over the generic pixel formats.  

Once you have an appropriate pixel format, SetPixelFormat is called. If SetPixelFormat is called for a 
device context that references a window, the function also changes the pixel format of the window. 
Changing the pixel format of a window more than once can lead to significant complications for the window 
manager and for multithreaded applications, so it is not allowed. An application can set the pixel format of 
a window only one time. Once a window's pixel format is set, it cannot be changed. 

Determining the Format 

It is a simple matter to determine if a pixel format is a generic or device format. The following code 
illustrates the use of the dwFlags field of the PIXELFORMATDESCRIPTOR structure to detect if the pixel 
format is generic or device-specific. 



BOOL COpenGL::IsDeviceIndex(HDC hdc, int idx) 
{ 
  ASSERT (hdc); 
  ASSERT (idx > 0); 
 
  BOOL bRet = FALSE; 
  PIXELFORMATDESCRIPTOR pfd; 
  int ipfdmax = DescribePixelFormat(hdc, idx, sizeof(PIXELFORMATDESCRIPTOR),  
                &pfd); 
 
  if (!(pfd.dwFlags & PFD_GENERIC_FORMAT)) 
    bRet = TRUE; 
  return (bRet); 
} 

If the PFD_GENERIC_FORMAT bit is set, the pixel format is generic (duh!). It is also very simple to detect 
if a given pixel format index is a native or non-native index. The following code illustrates this. 

BOOL COpenGL::IsNativeIndex(HDC hdc, int idx) 
{ 
  ASSERT (hdc); 
  ASSERT (idx > 0); 
 
  BOOL bRet = FALSE; 
  PIXELFORMATDESCRIPTOR pfd; 
  int ipfdmax = DescribePixelFormat(hdc, idx, sizeof(PIXELFORMATDESCRIPTOR),  
                &pfd); 
 
  if (pfd.dwFlags & PFD_DRAW_TO_WINDOW) 
    bRet = TRUE; 
  return (bRet); 
} 

If the PFD_DRAW_TO_WINDOW bit is set in dwFlags, the pixel format is native. This may include both 
generic and device-specific pixel formats. If this bit is not set, the pixel format is non-native and is 
provided for support of bitmaps. 

OpenGL/NT and Device Contexts 

As you begin to use device contexts with OpenGL/NT, remember two things:  

l Once the pixel format for a window has been set (by calling SetPixelFormat with a DC of that 
window), it can never be reset. 
 

l The DC used to create a rendering context may be released or deleted. All DCs subsequently 
retrieved or created will have the correct pixel format index associated with them.  

To retrieve the index of the currently set pixel format, use the GetPixelFormat function. This function is 
used in several places in MYGL. The following code, found in COPENGL.CPP, illustrates its use. 

int COpenGL::GetCurPFDIndex() 
{ 
  int icuridx = GetPixelFormat(wglGetCurrentDC()); 
  return (icuridx); 
   
} 

In this code, GetPixelFormat is used to retrieve the pixel format index of the current DC. That index is 
then passed to DescribePixelFormat to obtain more information about the pixel format. 

To retrieve the maximum number of device pixel formats supported for a given DC, use the 
DescribePixelFormat function. In the code below, the return value of DescribePixelFormat is assigned 
to the variable ipfdmax. 

int COpenGL::GetMaxPFIndex(HDC hdc) 
{ 
  PIXELFORMATDESCRIPTOR pfd; 
   
  int ipfdmax = DescribePixelFormat(hdc, 1, sizeof(PIXELFORMATDESCRIPTOR),  
                &pfd); 
 
  return (ipfdmax); 
} 



The total number of device formats would be: 

iDevMax = ipfdmax - 24 

OpenGL/NT Rendering Contexts 

There are three important things to remember about rendering contexts:  

l The pixel format must be set up before creating the rendering context. 
 

l The rendering context must be associated with a device context (by using wglMakeCurrent) 
before you can call OpenGL commands. 
 

l The device context should not be released or deleted when it is associated with a rendering context 
(unless the DC belongs to a window whose class style is CS_OWNDC).  

An OpenGL/NT rendering context (GLRC) is composed of a handle to an OpenGL/NT driver (if any), a client 
handle (HGLRC), the current pixel format index, a thread ID, and a handle to the DC bound to the 
rendering context. 

There are five functions, as shown in Table 4, that permit management of a rendering context. 

Table 4. OpenGL/NT Rendering Context Functions (WGL Functions) 

 

Of course all of these functions are important, but the one that will make or break you is 
wglMakeCurrent. It is the function that enables all drawing to take place on a DC. It makes the 
rendering context the calling thread’s current rendering context through which all OpenGL commands must 
"pass." Refer to the OpenGL/NT documentation for a more detailed description of these functions. 

In general, an application calls wglCreateContext and then associates the context with a device surface 
by calling wglMakeCurrent. OpenGL drawing can then take place on the device surface, after which the 
rendering context can be unassociated with the DC by calling wglMakeCurrent again (with NULL 
arguments). Finally, the rendering context can be deleted by calling wglDeleteContext. 

Pulling It All Together 

As you can see, device contexts (including pixel formats) and rendering contexts are closely associated. 
So, just how does it all fall together? It all starts with a device context. 

The DC is used to create an OpenGL rendering context. This context is used by OpenGL to draw to the DC 
and ultimately the device surface. There are two ways you can approach the use of DCs. In Figure 5, the 
DC is created during initialization and destroyed as the application closes. The fact that we are not pairing 
GetDC/CreateDC and ReleaseDC/DeleteDC within the same scope is unnerving to some. Ah yes, we 
have been conditioned! Arf arf...drool. 

WGL Function Description

wglCreateContext Creates a new rendering context.

wglMakeCurrent Sets a thread's current rendering context.

wglGetCurrentContext Obtains a handle to a thread's current rendering context.

wglGetCurrentDC Obtains a handle to the device context that is associated with a 
thread's current rendering context.

wglDeleteContext Deletes a rendering context.



 

Figure 5. First approach to use of device contexts with OpenGL 

Rest assured, you can follow your ingrained desire to delete the DC immediately after use. Figure 6 
illustrates this. The rendering context is created in the response to WM_CREATE, and the DC used to 
create the context is released or deleted. It is not until the response to WM_PAINT that the rendering 
context is bound to a device context, in this case the Paint DC. It is important to note that this way of 
doing things is quite expensive. Making the context current is not trivial. The point to be made here is that 
a rendering context must be bound to a DC before OpenGL drawing can take place. You decide where and 
what DC you are going to bind to the rendering context (as long as the DC has the same pixel format as 
that used to create the rendering context). 

 

Figure 6. Second approach to use of device contexts with OpenGL 

The OpenGL sample (GENGL) included with the Windows NT 3.5 Software Development Kit (SDK) takes 
the first approach. MYGL uses the first approach, although slightly modified. The rendering context is 
created in response to user input provided in a dialog box. When the dialog box is dismissed, the handle of 
the view window is used to obtain a DC and rendering context. When the view window is destroyed, the 
rendering context is deleted. 

There is a little "gotcha" that can prevent setting the pixel format of a device context. The window in which 
OpenGL drawing will take place must have the style bits WS_CLIPCHILDREN and WS_CLIPSIBLINGS set. 



Otherwise, SetPixelFormat will fail. The following code taken from MYGLVIEW.CPP shows how to override 
the PreCreateWindow function in order to set these style bits. 

BOOL CMyglView::PreCreateWindow(CREATESTRUCT& cs) 
{ 
  //The view window style bits must include WS_CLIPSIBLINGS and 
  //WS_CLIPCHILDREN so that the wgl functions will work. 
  // 
  cs.style = cs.style | WS_CLIPSIBLINGS | WS_CLIPCHILDREN; 
 
  return CView::PreCreateWindow(cs); 
} 

After the user has entered preliminary PIXELFORMATDESCRIPTOR values by way of the Choose Pixel 
Format (CPIXFORM.CPP) dialog box, the OK button is clicked and the OnOK function is called. After 
validating the existence of a rendering context and the appropriateness of the pixel format, the following 
code, from MYGL (in COPENGL.CPP), is called to set up the pixel format and create the rendering context. 

BOOL COpenGL::GetGLRC(HDC hdc) 
{  
   BOOL bRet = TRUE; 
 
   ASSERT (m_pPixFmtDesc); 
 
   if (SetupPixelFormat(hdc, m_pPixFmtDesc)) 
   { 
     if ((m_hglrc = wglCreateContext(hdc)) != NULL) 
     { 
       if (!wglMakeCurrent(hdc, m_hglrc)) 
       { 
         wglDeleteContext(m_hglrc); 
         bRet = FALSE; 
       } 
     } 
     else bRet = FALSE; 
   } 
   else  
     bRet = FALSE; 
 
   return bRet; 
} 

Once the pixel format is set up for the DC, the rendering context is created by a call to 
wglCreateContext. If the rendering context was successfully created, it is bound to the current DC. Note 
that this DC is not released. This does not happen until MYGL closes. 

MYGL draws by issuing OpenGL commands in the OnDraw function found in MYGLVIEW.CPP.  

void CMyglView::OnDraw(CDC* pDC) 
{ 
  CMyglDoc* pDoc = GetDocument(); 
  RECT rc; 
  COpenGL gl; 
  HGLRC hglrc = gl.wglGetCurrentContext(); 
 
  if (hglrc) 
  { 
    GetClientRect(&rc); 
    DrawScene(rc); 
  } 
   
} 

The wglGetCurrentContext function is called to ensure that there is in fact a rendering context. 
However, if there was not, nothing adverse would happen. No drawing would take place. Note that the DC 
associated with pDC is not passed to DrawScene . The DC is implicit and is the DC associated with the 
rendering context. 

The following code is called when MYGL closes. 

BOOL COpenGL::ReleaseGLRC(HWND hwnd) 
{ 
  BOOL bRet = TRUE; 
  HDC   hdc; 
  HGLRC hglrc; 
   
  if (hglrc = wglGetCurrentContext()) 
  { 
    // 



    //Get the DC associated with the rendering context. 
    // 
    hdc = wglGetCurrentDC(); 
    // 
    //Make the rendering context not current. 
    // 
    wglMakeCurrent(NULL, NULL); 
    // 
    //Nuke the DC. 
    // 
    ::ReleaseDC(hwnd, hdc); 
   // 
   //Nuke the rendering context. 
   // 
   wglDeleteContext(hglrc); 
  } 
  else bRet = FALSE; 
  return bRet; 
 
} 

After retrieving the current DC, using wglGetCurrentDC, it is released. The rendering context is then 
released. 

Summary 

Windows NT version 3.5 provides OpenGL capabilities. In the generic implementation, all of the pixel 
format and rendering management is handled by GDI. In the device implementation, much of this 
management is supported by the device. Before OpenGL drawing can take place, the window, bitmap, or 
device’s pixel format must be set up. A rendering context is then created. At this point, drawing can take 
place. Now that Windows NT provides the structure and functions for 3-D graphics, it is up to applications 
developers to provide the cool applications. Have fun. 

Future technical articles will zero in on OpenGL specifics. Stay tuned. 
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